Long Duration Balloon Maximum Power Point Tracking (MPPT) solar power system development

Perez, Juan
Bibliographical reference

37th COSPAR Scientific Assembly. Held 13-20 July 2008, in Montréal, Canada., p.2390

Advertised on:
0
2008
Number of authors
1
IAC number of authors
0
Citations
0
Refereed citations
0
Description
High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to 40 days. Longer missions, with durations of up to 100 days (Ultra Long), are in the planning stages. Due to the flight durations, solar power systems have been utilized throughout the Long Duration Balloon (LDB) flight program to power the necessary electronic systems. Recently, Maximum Power Point Tracking (MPPT) charge controllers have become available off-the-shelf. These controllers along with high efficiency mono-crystalline solar cells have become reliable, low cost solutions even in the harsh environments they operate in. The LDB program at the Columbia Scientific Balloon Facility (CSBF) began supporting solar power systems with custom units fabricated by the Physical Science Laboratory (PSL) of New Mexico State University (NMSU). These charge controllers proved to be very reliable systems; however, they required intensive labor to build and were relatively expensive. As off-the-shelf MPPT charge controllers have become available, they have been integrated into the LDB flight support systems. Coupled with PSL developed interface electronics for monitoring and power switching, they have proven to be as reliable, less expensive, and more efficient. The addition of MPPT allows for the controller to operate the solar panel at it highest power production point. Newer, off-the-shelf controllers with smarter MPPT, are currently being tested. This paper describes the long and ultra-long balloon missions and the role that solar power plays in mission success. More importantly, it discusses the recent developments in off-the-shelf MPPT charge controllers configured for use in the harsh high altitude balloon environment.