Merger-driven star formation activity in Cl J1449+0856 at z = 1.99 as seen by ALMA and JVLA

Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 479, Issue 1, p.703-729

Advertised on:
9
2018
Number of authors
16
IAC number of authors
1
Citations
75
Refereed citations
67
Description
We use Atacama Large Millimetre Array and Jansky Very Large Array observations of the galaxy cluster Cl J1449+0856 at z = 1.99, in order to study how dust-obscured star formation, interstellar medium content, and active galactic nuclei activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star formation rates, gas consumption timescales, and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly excited molecular gas, contributing >50 per cent to the total star formation rate (SFR) in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdep < 0.1-0.4 Gyr for all galaxies. Interestingly, we do not see evidence for increased specific SFRs (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions, and active galactic nuclei in the cluster core.
Related projects
Galaxy proto-cluster
Molecular Gas and Dust in Galaxies Across Cosmic Time
Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of
Helmut
Dannerbauer