Multiwavelength Properties of the X-Ray Sources in the Groth-Westphal Strip Field

Miyaji, Takamitsu; Sarajedini, Vicki; Griffiths, Richard E.; Yamada, Toru; Schurch, Matthew; Cristóbal-Hornillos, David; Motohara, Kentaro
Bibliographical reference

The Astronomical Journal, Volume 127, Issue 6, pp. 3180-3191.

Advertised on:
6
2004
Number of authors
7
IAC number of authors
1
Citations
14
Refereed citations
11
Description
We summarize the multiwavelength properties of X-ray sources detected in the 80 ks XMM-Newton observation of the Groth-Westphal strip, a contiguous strip of 28 Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images. Among the ~150 X-ray sources detected in the XMM-Newton field of view, 23 are within the WFPC2 fields. Ten spectroscopic redshifts are available from the Deep Extragalactic Evolutionary Probe and Canada-France Redshift Survey projects. Four of these show broad Mg II emission and can be classified as type 1 active galactic nuclei (AGNs). Two of those without any broad lines, nevertheless, have [Ne V] emission, which is an unambiguous signature of AGN activity. One is a narrow-line Seyfert 1 and the other a type 2 AGN. As a follow-up, we have made near-infrared spectroscopic observations using the OHS/CISCO spectrometer for five of the X-ray sources for which we found no indication of AGN activity in the optical spectrum. We have detected Hα+[N II] emission in four of them. A broad Hα component and/or a large [N II]/Hα ratio is seen, suggestive of AGN activity. Nineteen sources have been detected in the Ks band, and four of these are extremely red objects (EROs) (I814-Ks>4). The optical counterparts for the majority of the X-ray sources are bulge-dominated. The I814-Ks color of these bulge-dominated hosts are indeed consistent with evolving elliptical galaxies, while contaminations from star formation/AGNs seems to be present in their V606-I814 color. Assuming that the known local relations among the bulge luminosity, central velocity dispersion, and the mass of the central blackhole still hold at z~1, we compare the AGN luminosity with the Eddington luminosity of the central blackhole mass. The AGN bolometric luminosity to Eddington luminosity ratio ranges from 0.3% to 10%. Based on observations from the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA. Also based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.