The origin of bulges and discs in the CALIFA survey - I. Morphological evolution

Méndez-Abreu, J.; de Lorenzo-Cáceres, A.; Sánchez, S. F.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
6
2021
Number of authors
3
IAC number of authors
2
Citations
17
Refereed citations
16
Description
This series of papers aims at understanding the formation and evolution of non-barred disc galaxies. We use the new spectro-photometric decomposition code, C2D, to separate the spectral information of bulges and discs of a statistically representative sample of galaxies from the CALIFA survey. Then, we study their stellar population properties analysing the structure-independent datacubes with the PIPE3D algorithm. We find a correlation between the bulge-to-total (B/T) luminosity (and mass) ratio and galaxy stellar mass. The B/T mass ratio has only a mild evolution with redshift, but the bulge-to-disc (B/D) mass ratio shows a clear increase of the disc component since redshift z < 1 for massive galaxies. The mass-size relation for both bulges and discs describes an upturn at high galaxy stellar masses (log (M⋆/M⊙) > 10.5). The relation holds for bulges but not for discs when using their individual stellar masses. We find a negligible evolution of the mass-size relation for both the most massive (log(M⋆,b,d/M⊙) > 10) bulges and discs. For lower masses, discs show a larger variation than bulges. We also find a correlation between the Sérsic index of bulges and both galaxy and bulge stellar mass, which does not hold for the disc mass. Our results support an inside-out formation of nearby non-barred galaxies, and they suggest that (i) bulges formed early-on and (ii) they have not evolved much through cosmic time. However, we find that the early properties of bulges drive the future evolution of the galaxy as a whole, and particularly the properties of the discs that eventually form around them.
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies

Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to

Jairo
Méndez Abreu
Supermassive black holes modify the distribution of molecular gas in the central regions of galaxies. Credit: HST and C. Ramos Almeida.
Nuclear Activity in Galaxies: a 3D Perspective from the Nucleus to the Outskirts

This project consists of two main research lines. First, the study of quasar-driven outflows in luminous and nearby obscured active galactic nuclei (AGN) and the impact that they have on their massive host galaxies (AGN feedback). To do so, we have obtained Gran Telescopio CANARIAS (GTC) infrared and optical observations with the instruments

Cristina
Ramos Almeida