The photo-astrometric vertical tracer density of the Milky Way - II. Results from Gaia

Everall, Andrew; Belokurov, Vasily; Evans, N. Wyn; Boubert, Douglas; Grand, Robert J. J.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
4
2022
Number of authors
5
IAC number of authors
1
Citations
12
Refereed citations
11
Description
We use Gaia photometry and astrometry to estimate the vertical spatial structure of the Milky Way at the Solar radius, formally accounting for sample incompleteness (the selection function) and parallax measurement uncertainty. Our results show impressive precision demonstrating the power of the Gaia data. However, systematic errors dominate the parameter value uncertainties. We thoroughly test and quantify the impacts of all systematic uncertainties. The vertical tracer density is modelled as a sum of two exponential profiles for the thin and thick discs, together with a spherically symmetric power law for the stellar halo. We constrain the thin disc scale height as ${h_\mathrm{Tn}=260 \pm 3\, (\mathrm{stat}) \pm 26\, \mathrm{pc}\, (\mathrm{sys})}$ and thick disc ${h_\mathrm{Tk}=693 \pm 7 \, (\mathrm{stat}) \pm 121\, \mathrm{pc}\, (\mathrm{sys})}$. For the halo, we obtain a power-law profile with $n_\mathrm{H}=3.543\pm 0.023 \, (\mathrm{stat}) \pm 0.259\, (\mathrm{sys})$. We infer a local stellar mass density for non-compact object stars of ${\rho _\mathrm{local}^{*} = 3.66\pm 0.03\, (\mathrm{stat})\pm 0.52 \times 10^{-2}\, \mathrm{M}_\odot \, \mathrm{pc}^{-3}\, (\mathrm{sys})}$ and surface density of ${\Sigma _\mathrm{local}^{*} = 23.17\pm 0.08\, (\mathrm{stat})\pm 2.43\, \mathrm{M}_\odot \, \mathrm{pc}^{-2}\, (\mathrm{sys})}$. We find asymmetries above and below the disc with longer disc scale heights in the north but a flatter halo in the south at the ≲ 10 per cent level.
Related projects
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group
Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy
Matteo
Monelli