Galaxy Evolution in the Local Group

    General
    Description

    Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy properties from the study of their resolved stars. Depending on their mass, stars can live as long as a Hubble time, thus allowing to study in exquisite detail how galaxies have evolved from the early Universe to the present time. This research is one of the main drivers of major international projects, both observational (such as the on-going Gaia mission and SDSS surveys, and the planned WHT/WEAVE, LSST, VISTA/4MOST, DESI, E-ELT/HARMONI, to name a few), and theoretical (such as Nihao, Magic and Auriga hydrodynamical cosmological simulations), in most of which members of our team are involved. This ensures that Galactic Archaelogy will be at the forefront of astronomical research for a long time.

    The objective of this project is to understand the formation and evolution of galaxies of different morphological types, using the many local examples that can be resolved into individual stars, and which, therefore can be studied in a detail impossible elsewhere. In particular, the Local Group and its immediate surroundings contain about 80 galaxies of different morphological types. Among these, the largest are spiral galaxies (the Milky Way, M31 and M33), a dozen of them are (dwarf) irregulars and the rest are early-type systems. Thus, we can study galaxies of different morphological types, from the Milky Way down to the smallest galactic scales, which are those challenging our understanding of what a "galaxy" is.

    We aim to derive their evolutionary history using a set of complementary techniques: I) using deep photometry reaching the old main sequence turn-offs, it is possible to derive the full star formation history over the entire galaxy's life; ii) spectroscopic studies of individual stars add direct information on the kinematics and chemical abundances of the different stellar populations; iii) for the most nearby systems, the inclusion of accurate astrometric measurements yields information on the distance (and thus absolute brightness), the orbital motion of the system and can even deliver the full 6D phase-space information of sub-samples of stars; iv) the study of variable stars such as Cepheids and RR Lyrae provide independent constraints on metallicities and ages of the populations they belong to. These observations offer invaluable, rich information, that can be interpreted using hydrodynamic cosmological simulations of galaxy formation that model a wide range of important physical processes.

    Principal investigator
    Collaborators

    Below a list of highlights from the group activities in 2020-2021. For a more general overview see publication list and this webpage

    1. Using HST data of the ultra-faint dwarf (UFD) Eridanus II, we determined (Gallart+2021) that its only star formatio event, occurred 13 Gyr ago, was very short (100-500Myr). The associated SNe energy could be enough to expel the remaining gas, casting doubts on the need to invoke cosmic reionization as the preferred explanation for the early quenching of UFD galaxies.

    2. The various star formation episodes, extended to few hundred million years ago, which we have precisely dated in the dwarf spheroidal galaxies Fornax (Rusakov+2021) and Leo I (Ruiz-Lara+2021), have shed light on the effects of interactions and mergers in the star formation history of dwarf galaxies.

    3. By performing for the first time a joint dynamical modeling of the internal stellar and HI gas kinematics of a Local Group dwarf galaxy, WLM, we were able to determine that its dark matter halo is likely both cored and has a prolate shape, where the co-existence of these features might pose a problem for self-interacting dark matter models (Leung+2021).

    4. For the first time using cosmological simulations, we demonstrated that mergers are a viable explanation for the presence of prolate rotation in the stellar component of galaxies also on the scale of dwarf galaxies (Cardona-Barrero+2021)

    5. Robert Grand ran the highest resolution MHD cosmological Milky Way simulation in the world (Grand+2021), run on MPCDF Raven large compute system for which the PI had rolling access as an MPA fellow.

     

    Related publications

    • The Phantom Dark Matter Halos of the Local Volume in the Context of Modified Newtonian Dynamics

      We explore the predictions of Milgromian gravity (MOND) in the local universe by considering the distribution of the "phantom" dark matter (PDM) that would source the MOND gravitational field in Newtonian gravity, allowing an easy comparison with the dark matter framework. For this, we specifically deal with the quasi-linear version of MOND (QUMOND

      Oria, P. -A. et al.

      Advertised on:

      12
      2021
    • APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites

      The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully

      Hasselquist, Sten et al.

      Advertised on:

      12
      2021
    • Variable Stars in Local Group Galaxies. VI. The Isolated Dwarfs VV 124 and KKr 25

      We present the discovery of variable stars in two isolated dwarf galaxies in the outskirts of the Local Group, VV 124 and KKr 25, using observations with the Hubble Space Telescope. VV 124 hosts stellar populations with a wide range of ages (>10 Gyr until the present) and therefore we find all types of classical pulsators. In VV 124, we detect a

      Neeley, Jillian R. et al.

      Advertised on:

      10
      2021
    • On the Use of Field RR Lyrae As Galactic Probes: IV. New Insights Into and Around the Oosterhoff Dichotomy

      We discuss the largest and most homogeneous spectroscopic data set of field RR Lyrae variables (RRLs) available to date. We estimated abundances using both high-resolution and low-resolution (ΔS method) spectra for fundamental (RRab) and first overtone (RRc) RRLs. The iron abundances for 7941 RRLs were supplemented with similar estimates that are

      Fabrizio, M. et al.

      Advertised on:

      10
      2021
    • The Pristine survey XIII: uncovering the very metal-poor tail of the thin disc

      We evaluate the rotational velocity of stars observed by the Pristine survey towards the Galactic anticentre spanning a wide range of metallicities from the extremely metal-poor regime ([Fe/H] < -3) to nearly solar metallicity. In the Galactic anticentre direction, the rotational velocity (Vϕ) is similar to the tangential velocity in the galactic

      Fernández-Alvar, Emma et al.

      Advertised on:

      11
      2021
    • Variable stars in Local Group galaxies - V. The fast and early evolution of the low-mass Eridanus II dSph galaxy

      We present a detailed study of the variable star population of Eridanus II (Eri II), an ultra-faint dwarf galaxy that lies close to the Milky Way virial radius. We analyse multi-epoch g, r, i ground-based data from Goodman and the Dark Energy Camera, plus F475W, F606W, F814W space data from the Advanced Camera for Surveys. We report the detection

      Martínez-Vázquez, C. E. et al.

      Advertised on:

      11
      2021
    • On the Use of Field RR Lyrae as Galactic Probes. V. Optical and Radial Velocity Curve Templates

      We collected the largest spectroscopic catalog of RR Lyrae (RRLs) including ≍20,000 high-, medium-, and low-resolution spectra for ≍10,000 RRLs. We provide the analytical forms of radial velocity curve (RVC) templates. These were built using 36 RRLs (31 fundamental-split into three period bins-and five first-overtone pulsators) with well-sampled

      Braga, V. F. et al.

      Advertised on:

      10
      2021
    • Determining the full satellite population of a Milky Way-mass halo in a highly resolved cosmological hydrodynamic simulation

      We investigate the formation of the satellite galaxy population of a Milky Way-mass halo in a very highly resolved magnetohydrodynamic cosmological zoom-in simulation (baryonic mass resolution mb = 800 $\rm M_{\odot }$). We show that the properties of the central star-forming galaxy, such as the radial stellar surface density profile and star

      Grand, Robert J. J. et al.

      Advertised on:

      11
      2021
    • A Disk and No Signatures of Tidal Distortion in the Galaxy "Lacking" Dark Matter NGC 1052-DF2

      Using ultra-deep imaging (μg = 30.4 mag arcsec-2; 3σ, 10″ × 10″), we probed the surroundings of the first galaxy "lacking" dark matter (DM) KKS2000[04] (NGC 1052-DF2). Signs of tidal stripping in this galaxy would explain its claimed low content of DM. However, we find no evidence of tidal tails. In fact, the galaxy remains undisturbed down to a

      Montes, Mireia et al.

      Advertised on:

      9
      2021
    • Uncovering fossils of the distant Milky Way with UNIONS: NGC 5466 and its stellar stream

      We examine the spatial clustering of blue horizontal branch (BHB) stars from the u-band of the Canada-France Imaging Survey (CFIS, a component of the Ultraviolet Near-Infrared Optical Northern Survey, or UNIONS). All major groupings of stars are associated with previously known satellites, and among these is NGC 5466, a distant (16 kpc) globular

      Jensen, Jaclyn et al.

      Advertised on:

      10
      2021
    • Zero-metallicity Hypernova Uncovered by an Ultra-metal-poor Star in the Sculptor Dwarf Spheroidal Galaxy

      Although true metal-free "Population III" stars have so far escaped discovery, their nature, and that of their supernovae, is revealed in the chemical products left behind in the next generations of stars. Here we report the detection of an ultra-metal-poor star in the Sculptor dwarf spheroidal galaxy AS0039. With [Fe/H]LTE = -4.11, it is the most

      Skúladóttir, Ása et al.

      Advertised on:

      7
      2021
    • Origin of stellar prolate rotation in a cosmologically simulated faint dwarf galaxy

      Stellar prolate rotation in dwarf galaxies is rather uncommon, with only two known galaxies in the Local Group showing such feature (Phoenix and And II). Cosmological simulations show that in massive early-type galaxies prolate rotation likely arises from major mergers. However, the origin of such kinematics in the dwarf galaxies regime has only

      Cardona-Barrero, Salvador et al.

      Advertised on:

      7
      2021
    • Charting the Galactic Acceleration Field. I. A Search for Stellar Streams with Gaia DR2 and EDR3 with Follow-up from ESPaDOnS and UVES

      We present maps of the stellar streams detected in the Gaia Data Release 2 (DR2) and Early Data Release 3 (EDR3) catalogs using the STREAMFINDER algorithm. We also report the spectroscopic follow-up of the brighter DR2 stream members obtained with the high-resolution CFHT/ESPaDOnS and VLT/UVES spectrographs as well as with the medium-resolution NTT

      Ibata, Rodrigo et al.

      Advertised on:

      6
      2021
    • On the Use of Field RR Lyrae as Galactic Probes. III. The α-element Abundances

      We provide the largest and most homogeneous sample of α-element (Mg, Ca, Ti) and iron abundances for field RR Lyrae (RRLs; 162 variables) by using high-resolution spectra. The current measurements were complemented with similar abundances available in the literature for 46 field RRLs brought to our metallicity scale. We ended up with a sample of

      Crestani, J. et al.

      Advertised on:

      6
      2021
    • Metallicity of Galactic RR Lyrae from Optical and Infrared Light Curves. I. Period-Fourier-Metallicity Relations for Fundamental-mode RR Lyrae

      We present newly calibrated period-φ31-[Fe/H] relations for fundamental-mode RR Lyrae stars in the optical and, for the first time, mid-infrared. This work's calibration data set provides the largest and most comprehensive span of parameter space to date, with homogeneous metallicities from -3 ≲ [Fe/H] ≲ 0.4 and accurate Fourier parameters derived

      Mullen, Joseph P. et al.

      Advertised on:

      5
      2021
    • Metallicities from high-resolution spectra of 49 RR Lyrae variables

      Accurate metallicities of RR Lyrae are extremely important in constraining period-luminosity-metallicity (PLZ) relationships, particularly in the near-infrared. We analyse 69 high-resolution spectra of Galactic RR Lyrae stars from the Southern African Large Telescope. We measure metallicities of 58 of these RR Lyrae stars with typical uncertainties

      Gilligan, Christina K. et al.

      Advertised on:

      6
      2021
    • Observing the Stellar Halo of Andromeda in Cosmological Simulations: The AURIGA2PANDAS Pipeline

      We present a direct comparison of the Pan-Andromeda Archaeological Survey (PAndAS) observations of the stellar halo of M31 with the stellar halos of six galaxies from the Auriga simulations. We process the simulated halos through the AURIGA2PANDAS pipeline and create PAndAS-like mocks that fold in all observational limitations of the survey data

      Thomas, Guillaume F. et al.

      Advertised on:

      4
      2021
    • Solo dwarfs II: the stellar structure of isolated Local Group dwarf galaxies

      The Solo (Solitary Local) Dwarf Galaxy survey is a volume-limited, wide-field g- and i-band survey of all known nearby (<3 Mpc) and isolated (>300 kpc from the Milky Way or M31) dwarf galaxies. This set of 44 dwarfs is homogeneously analysed for quantitative comparisons to the satellite dwarf populations of the Milky Way and M31. In this paper, an

      Higgs, C. R. et al.

      Advertised on:

      5
      2021
    • The Star Formation History of Eridanus II: On the Role of Supernova Feedback in the Quenching of Ultrafaint Dwarf Galaxies

      Eridanus II (Eri II) is an ultrafaint dwarf (UFD) galaxy (MV = -7.1) located at a distance close to the Milky Way virial radius. Early shallow color-magnitude diagrams (CMDs) indicated that it possibly hosted an intermediate-age or even young stellar population, which is unusual for a galaxy of this mass. In this paper, we present new Hubble Space

      Gallart, C. et al.

      Advertised on:

      3
      2021
    • On the Use of Field RR Lyrae as Galactic Probes. II. A New ΔS Calibration to Estimate Their Metallicity

      We performed the largest and most homogeneous spectroscopic survey of field RR Lyraes (RRLs). We secured ≍6300 high-resolution (HR, R ∼ 35,000) spectra for 143 RRLs (111 fundamental, RRab; 32 first-overtone, RRc). The atmospheric parameters were estimated by using the traditional approach and the iron abundances were measured by using an LTE line

      Crestani, J. et al.

      Advertised on:

      2
      2021

    Related talks

    No related talks were found.

    Related conferences

    No related conferences were found.