Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 571, id.A22, 42 pp.
Advertised on:
11
2014
Journal
Citations
1000
Refereed citations
937
Description
We analyse the implications of the Planck data for cosmic inflation. The
Planck nominal mission temperature anisotropy measurements, combined
with the WMAP large-angle polarization, constrain the scalar spectral
index to be ns = 0.9603 ± 0.0073, ruling out exact
scale invariance at over 5σ.Planck establishes an upper bound on
the tensor-to-scalar ratio of r< 0.11 (95% CL). The Planck data thus
shrink the space of allowed standard inflationary models, preferring
potentials with V''< 0. Exponential potential models, the simplest
hybrid inflationary models, and monomial potential models of degree n
≥ 2 do not provide a good fit to the data. Planck does not find
statistically significant running of the scalar spectral index,
obtaining dns/ dlnk = - 0.0134 ± 0.0090. We verify
these conclusions through a numerical analysis, which makes no slow-roll
approximation, and carry out a Bayesian parameter estimation and
model-selection analysis for a number of inflationary models including
monomial, natural, and hilltop potentials. For each model, we present
the Planck constraints on the parameters of the potential and explore
several possibilities for the post-inflationary entropy generation
epoch, thus obtaining nontrivial data-driven constraints. We also
present a direct reconstruction of the observable range of the inflaton
potential. Unless a quartic term is allowed in the potential, we find
results consistent with second-order slow-roll predictions. We also
investigate whether the primordial power spectrum contains any features.
We find that models with a parameterized oscillatory feature improve the
fit by Δχ2eff ≈ 10 ; however,
Bayesian evidence does not prefer these models. We constrain several
single-field inflation models with generalized Lagrangians by combining
power spectrum data with Planck bounds on fNL. Planck
constrains with unprecedented accuracy the amplitude and possible
correlation (with the adiabatic mode) of non-decaying isocurvature
fluctuations. The fractional primordial contributions of cold dark
matter (CDM) isocurvature modes of the types expected in the curvaton
and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL),
respectively. In models with arbitrarily correlated CDM or neutrino
isocurvature modes, an anticorrelated isocurvature component can improve
the χ2eff by approximately 4 as a result of
slightly lowering the theoretical prediction for the ℓ ≲ 40
multipoles relative to the higher multipoles. Nonetheless, the data are
consistent with adiabatic initial conditions.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López