Grants related:
General
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present Universe, left imprinted inhomogeneities in the CMB temperature distribution, that are mathematically encoded in the so-called angular power spectrum. Initially, pioneering experiments like the COBE satellite (whose results deserved the Nobel Prize on Physics 2006) or the Tenerife CMB experiment demonstrated in the 90s that the level of anisotropy was about one part in a hundred thousands at angular scales of several degrees. Obtaining CMB maps at various frequencies with sufficient sensitivity to detect structures at this level is of fundamental importance to extract information on the power spectrum of primordial density fluctuations, to prove the existence of an inflationary period in the Early Universe and to establish the ultimate nature of the dark matter and dark energy. Recently, the WMAP satellite obtained CMB maps with unprecedented sensitivity that allowed to set restrictions on a large number of cosmological parameters.
The focus of this project is to undertake measurements at gradually higher angular resolutions and sensitivities, by using different experiments that have been operative from the Teide Observatory, like the Tenerife experiment, the IAC-Bartol experiment or the JBO-IAC interferometer. More recently, the Very Small Array interferometer performed observations between 1999 and 2008. At that time the COSMOSOMAS experiment was also operative, its goal having been not only the characterization of the primary CMB anisotropies but also the study and characterization of the Galactic foreground contamination. In more recent years the activity in this project has focused in the scientific exploitation of data from the Planck satellite, and in the development, operation and exploitation of the QUIJOTE experiment. Now that the Planck mission has been completed and finished, the activity is focused in the scientific exploitation of QUIJOTE, in the development of new instrumentation for QUIJOTE, and in in the development of new experiments that are being deployed or that will be deployed at the Teide Observatory: GroundBRID, STRIP, KISS and TMS.
Members
Results
- 6-7 june: XV QUIJOTE Scientific Meeting (IFCA, Santander)
- July: publication of the final results (12 articles) and data from the Planck satellite.
- 15-19 october: "CMB foregrounds for B-mode studies" conference, organised within the Radioforegrounds proyect, IV AME workshop, and XVI QUIJOTE Scientific Meeting (all these eventes were celebrated at the IAC)
- October: installation of the dome of the GroundBIRD experiment, at the Teide Observatory.
- December: aceptation of the third QUIJOTE scientific article (Poidevin et al. 2019)
Scientific activity
Related publications
-
Constraints on primordial magnetic fields from their impact on the ionization history with Planck 2018
We update and extend our previous cosmic microwave background anisotropy constraints on primordial magnetic fields through their dissipation by ambipolar diffusion and magnetohydrodynamic decaying turbulence effects on the post-recombination ionization history. We derive the constraints using the latest Planck 2018 data release which improves on
Paoletti, D. et al.Advertised on:
122022 -
The BINGO Project. III. Optical design and optimization of the focal plane
Context. The Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) telescope was designed to measure the fluctuations of the 21 cm radiation arising from the hyperfine transition of neutral hydrogen. It is also aimed at measuring the baryon acoustic oscillations (BAO) from such fluctuations, thereby serving as a pathfinder
Abdalla, Filipe B. et al.Advertised on:
82022 -
The BINGO project. IV. Simulations for mission performance assessment and preliminary component separation steps
Aims: The large-scale distribution of neutral hydrogen (H I) in the Universe is luminous through its 21 cm emission. The goal of the Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) radio telescope is to detect baryon acoustic oscillations at radio frequencies through 21 cm intensity mapping (IM). The telescope will
Liccardo, Vincenzo et al.Advertised on:
82022 -
The BINGO project. II. Instrument description
Context. The measurement of diffuse 21-cm radiation from the hyperfine transition of neutral hydrogen (H I signal) in different redshifts is an important tool for modern cosmology. However, detecting this faint signal with non-cryogenic receivers in single-dish telescopes is a challenging task. The BINGO (Baryon Acoustic Oscillations from
Wuensche, Carlos A. et al.Advertised on:
82022 -
The BINGO project. V. Further steps in component separation and bispectrum analysis
Context. Observing the neutral hydrogen distribution across the Universe via redshifted 21 cm line intensity mapping constitutes a powerful probe for cosmology. However, the redshifted 21 cm signal is obscured by the foreground emission from our Galaxy and other extragalactic foregrounds. This paper addresses the capabilities of the BINGO survey to
Fornazier, Karin S. F. et al.Advertised on:
82022 -
The BINGO project. I. Baryon acoustic oscillations from integrated neutral gas observations
Context. Observations of the redshifted 21-cm line of neutral hydrogen (H I) are a new and powerful window of observation that offers us the possibility to map the spatial distribution of cosmic H I and learn about cosmology. Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) is a new unique radio telescope designed to be
Abdalla, Elcio et al.Advertised on:
82022 -
Fundamental physics with ESPRESSO: Constraints on Bekenstein and dark energy models from astrophysical and local probes<SUP>*</SUP>
Dynamical scalar fields in an effective four-dimensional field theory are naturally expected to couple to the rest of the theory's degrees of freedom, unless some new symmetry is postulated to suppress these couplings. In particular, a coupling to the electromagnetic sector will lead to spacetime variations of the fine-structure constant, α
Martins, C. J. A. P. et al.Advertised on:
62022 -
Searching for dark-matter waves with PPTA and QUIJOTE pulsar polarimetry
The polarization of photons emitted by astrophysical sources might be altered as they travel through a dark matter medium composed of ultra light axion-like particles (ALPs). In particular, the coherent oscillations of the ALP background in the galactic halo induce a periodic change on the polarization of the electromagnetic radiation emitted by
Castillo, Andrés et al.Advertised on:
62022 -
The C-Band All-Sky Survey (C-BASS): template fitting of diffuse galactic microwave emission in the northern sky
The C-Band All-Sky Survey (C-BASS) has observed the Galaxy at 4.76 GHz with an angular resolution of 0${_{.}^{\circ}}$73 full-width half-maximum, and detected Galactic synchrotron emission with high signal-to-noise ratio over the entire northern sky (δ > -15○). We present the results of a spatial correlation analysis of Galactic foregrounds at mid
Harper, S. E. et al.Advertised on:
72022 -
Polarization angle requirements for CMB B-mode experiments. Application to the LiteBIRD satellite
A methodology to provide the polarization angle requirements for different sets of detectors, at a given frequency of a CMB polarization experiment, is presented. The uncertainties in the polarization angle of each detector set are related to a given bias on the tensor-to-scalar ratio r parameter. The approach is grounded in using a linear
Vielva, P. et al.Advertised on:
42022 -
Velocity dispersion and dynamical masses for 388 galaxy clusters and groups. Calibrating the M<SUB>SZ</SUB> − M<SUB>dyn</SUB> scaling relation for the PSZ2 sample
The second catalogue of Planck Sunyaev-Zeldovich (SZ) sources, hereafter PSZ2, represents the largest galaxy cluster sample selected by means of their SZ signature in a full-sky survey. Using telescopes at the Canary Island observatories, we conducted the long-term observational program 128- MULTIPLE-16/15B (hereafter LP15), a large and complete
Aguado-Barahona, A. et al.Advertised on:
32022 -
Fundamental physics with ESPRESSO: Precise limit on variations in the fine-structure constant towards the bright quasar HE 0515−4414
The strong intervening absorption system at redshift 1.15 towards the very bright quasar HE 0515−4414 is the most studied absorber for measuring possible cosmological variations in the fine-structure constant, α. We observed HE 0515−4414 for 16.1 h with the Very Large Telescope and present here the first constraint on relative variations in α with
Murphy, Michael T. et al.Advertised on:
22022 -
The LSPE-Strip beams
In this paper we describe the design and characterization of the optical system of LSPE/Strip, a coherent polarimeter array that will observe the microwave sky from the Teide Observatory in Tenerife in two frequency bands centred at 43 and 95 GHz through a dual-reflector crossed-Dragone telescope of 1.5 m aperture. In general, optical systems
Realini, S. et al.Advertised on:
12022 -
In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications
We present a demonstration of the in-flight polarization angle calibration for the JAXA/ISAS second strategic large class mission, LiteBIRD, and estimate its impact on the measurement of the tensor-to-scalar ratio parameter, r, using simulated data. We generate a set of simulated sky maps with CMB and polarized foreground emission, and inject
Krachmalnicoff, N. et al.Advertised on:
12022 -
Accurate sky signal reconstruction for ground-based spectroscopy with kinetic inductance detectors
Context. Wide-field spectrometers are needed to deal with current astrophysical challenges that require multiband observations at millimeter wavelengths. An example of these is the KIDs Interferometer Spectrum Survey (KISS), which uses two arrays of kinetic inductance detectors (KIDs) coupled to a Martin-Puplett interferometer (MPI). KISS has a
Fasano, A. et al.Advertised on:
122021 -
Revisiting the Distance to Radio Loops I and IV Using Gaia and Radio/Optical Polarization Data
Galactic synchrotron emission exhibits large angular scale features known as radio spurs and loops. Determining the physical size of these structures is important for understanding the local interstellar structure and for modeling the Galactic magnetic field. However, the distance to these structures is either under debate or entirely unknown. We
Panopoulou, G. V. et al.Advertised on:
122021 -
Microwave spectro-polarimetry of matter and radiation across space and time
This paper discusses the science case for a sensitive spectro-polarimetric survey of the microwave sky. Such a survey would provide a tomographic and dynamic census of the three-dimensional distribution of hot gas, velocity flows, early metals, dust, and mass distribution in the entire Hubble volume, exploit CMB temperature and polarisation
Delabrouille, Jacques et al.Advertised on:
62021 -
A space mission to map the entire observable universe using the CMB as a backlight
This Science White Paper, prepared in response to the ESA Voyage 2050 call for long-term mission planning, aims to describe the various science possibilities that can be realized with an L-class space observatory that is dedicated to the study of the interactions of cosmic microwave background (CMB) photons with the cosmic web. Our aim is
Bartlett, James G. et al.Advertised on:
62021 -
New horizons in cosmology with spectral distortions of the cosmic microwave background
This Voyage 2050 paper highlights the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe, delivering novel information that complements past, present and future efforts with CMB anisotropy and large-scale structure
Silk, J. et al.Advertised on:
62021 -
The PICASSO map-making code: application to a simulation of the QUIJOTE northern sky survey
Map-making is an important step for the data analysis of cosmic microwave background (CMB) experiments. It consists of converting the data, which are typically a long, complex, and noisy collection of measurements, into a map, which is an image of the observed sky. We present in this paper a new map-making code named PICASSO (Polarization and
Guidi, F. et al.Advertised on:
112021
Related talks
No related talks were found.Related conferences
-
XIX Canary Islands Winter School of Astrophysics "The Cosmic Microwave | Background: from quantum fluctuations to the present Universe"Tenerife, Canary IslandsSpainDate-Past

IAC participation in the HERSCHEL AND PLANCK SURVEYOR space missions. Since 1996 the Instituto de Astrofísica de Canarias has been a contributor to the concept and development processes for the scientific payload of the European Space Agency's (ESA) Herschel Space Observatory and Planck Surveyor missions.