Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Bendo, G. J.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Israel, F. P.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 582, id.A28, 23 pp.
Advertised on:
10
2015
Journal
Citations
49
Refereed citations
45
Description
The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient
angular size on the sky to be resolved by the Planck satellite. Planck
has detected M 31 in all of its frequency bands, and has mapped out the
dust emission with the High Frequency Instrument, clearly resolving
multiple spiralarms and sub-features. We examine the morphology of this
long-wavelength dust emission as seen by Planck, including a study of
its outermost spiral arms, and investigate the dust heating mechanism
across M 31. We find that dust dominating the longer wavelength emission
(≳0.3 mm) is heated by the diffuse stellar population (as traced by
3.6 μm emission), with the dust dominating the shorter wavelength
emission heated by a mix of the old stellar population and star-forming
regions (as traced by 24 μm emission). We also fit spectral energy
distributions for individual 5' pixels and quantify the dust properties
across the galaxy, taking into account these different heating
mechanisms, finding that there is a linear decrease in temperature with
galactocentric distance for dust heated by the old stellar population,
as would be expected, with temperatures ranging from around 22 K in the
nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the
integrated spectrum of the whole galaxy, which we find to be well-fitted
with a global dust temperature of (18.2 ± 1.0) K with a spectral
index of 1.62 ± 0.11 (assuming a single modified blackbody), and
a significant amount of free-free emission at intermediate frequencies
of 20-60 GHz, which corresponds to a star formation rate of around 0.12
M⊙ yr-1. We find a 2.3σ detection of the
presence of spinning dust emission, with a 30 GHz amplitude of 0.7
± 0.3 Jy, which is in line with expectations from our Galaxy.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López