Search for exoplanets around pulsating stars of A-F type in Kepler short-cadence data and the case of KIC 8197761

Sowicka, Paulina; Handler, Gerald; Dębski, Bartłomiej; Jones, D.; Van de Sande, Marie; Pápics, Péter I.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 467, Issue 4, p.4663-4673

Advertised on:
Number of authors
IAC number of authors
Refereed citations
We searched for extrasolar planets around pulsating stars by examining Kepler data for transit-like events hidden in the intrinsic variability. All short-cadence observations for targets with 6000 < Teff < 8500 K were visually inspected for transit-like events following the removal of pulsational signals by sinusoidal fits. Clear transit-like events were detected in KIC 5613330 and KIC 8197761. KIC 5613330 is a confirmed exoplanet host (Kepler-635b), where the transit period determined here is consistent with the literature value. KIC 8197761 is a γ Doradus-δ Scuti star exhibiting eclipses/transits occurring every 9.868 6667(27) d, having durations of 8.37 h and causing brightness drops Δ F/F = 0.006 29(29). The star's pulsation spectrum contains several mode doublets and triplets, identified as l = 1, with a mean spacing of 0.001 659(15) d-1 , implying an internal rotation period of 301 ± 3 d. Trials to calculate the size of the light travel time effect (LTTE) from the pulsations to constrain the companion's mass ended inconclusive. Finding planets around γ Doradus stars from the pulsational LTTE, therefore, is concluded to be unrealistic. Spectroscopic monitoring of KIC 8197761 revealed sinusoidal radial velocity variations with a semi-amplitude of 19.75 ± 0.32 km s-1, while individual spectra present rotational broadening consistent with vsin i = 9 ± 1 km s-1. This suggests that the stellar surface rotation is synchronized with the orbit, whereas the stellar core rotates ˜30 times slower. Combining the observed radial velocity variability with the transit photometry, constrains the companion's mass to be ≈0.28 M⊙, ruling out an exoplanet hypothesis.
Related projects
Planetary Nebula "The Necklace"
Bipolar Nebulae

This project has three major objectives: 1) To determine the physico-chemical characteristics of bipolar planetary nebulae and symbiotic nebulae, to help understanding the origin of bipolarity and to test theoretical models, mainly models with binary central stars, aimed at explaining the observed morphology and kinematics. 2) To study the low

Mampaso Recio