The Seismic Structure of the Sun

Gough, D. O.; Kosovichev, A. G.; Toomre, J.; Anderson, E.; Antia, H. M.; Basu, S.; Chaboyer, B.; Chitre, S. M.; Christensen-Dalsgaard, J.; Dziembowski, W. A.; Eff-Darwich, A.; Elliott, J. R.; Giles, P. M.; Goode, P. R.; Guzik, J. A.; Harvey, J. W.; Hill, F.; Leibacher, J. W.; Monteiro, M. J. P. F. G.; Richard, O.; Sekii, T.; Shibahashi, H.; Takata, M.; Thompson, M. J.; Vauclair, S.; Vorontsov, S. V.
Bibliographical reference

Science, Volume 272, Issue 5266, pp. 1296-1300

Advertised on:
5
1996
Journal
Number of authors
26
IAC number of authors
1
Citations
222
Refereed citations
159
Description
Global Oscillation Network Group data reveal that the internal structure of the sun can be well represented by a calibrated standard model. However, immediately beneath the convection zone and at the edge of the energy-generating core, the sound-speed variation is somewhat smoother in the sun than it is in the model. This could be a consequence of chemical inhomogeneity that is too severe in the model, perhaps owing to inaccurate modeling of gravitational settling or to neglected macroscopic motion that may be present in the sun. Accurate knowledge of the sun's structure enables inferences to be made about the physics that controls the sun; for example, through the opacity, the equation of state, or wave motion. Those inferences can then be used elsewhere in astrophysics.
Type