The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey

Zhu, L.; van de Ven, Glenn; Bosch, Remco van den; Rix, Hans-Walter; Lyubenova, Mariya; Falcón-Barroso, J.; Martig, Marie; Mao, Shude; Xu, Dandan; Jin, Yunpeng; Obreja, Aura; Grand, Robert J. J.; Dutton, Aaron A.; Macciò, Andrea V.; Gómez, Facundo A.; Walcher, Jakob C.; García-Benito, Rubén; Zibetti, Stefano; Sánchez, Sebastian F.
Bibliographical reference

Nature Astronomy, Volume 2, p. 233-238

Advertised on:
3
2018
Number of authors
19
IAC number of authors
1
Citations
68
Refereed citations
66
Description
Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation1,2. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxy's formation history3. The orbits dominated by ordered rotation, with near-maximum circularity λz ≈ 1, are called kinematically cold, and the orbits dominated by random motion, with low circularity λz ≈ 0, are kinematically hot. The fraction of stars on `cold' orbits, compared with the fraction on `hot' orbits, speaks directly to the quiescence or violence of the galaxies' formation histories4,5. Here we present such orbit distributions, derived from stellar kinematic maps through orbit-based modelling for a well-defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey6, includes the main morphological galaxy types and spans a total stellar mass range from 108.7 to 1011.9 solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass and its volume-averaged total distribution. We find that across most of the considered mass range and across morphological types, there are more stars on `warm' orbits defined as 0.25 ≤ λz ≤ 0.8 than on either `cold' or `hot' orbits. This orbit-based `Hubble diagram' provides a benchmark for galaxy formation simulations in a cosmological context.
Related projects
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro
Type