Bibcode
Teske, Johanna; Díaz, Matías R.; Luque, Rafael; Močnik, Teo; Seidel, Julia V.; Otegi, Jon Fernández; Feng, Fabo; Jenkins, James S.; Pallè, Enric; Ségransan, Damien; Udry, Stèphane; Collins, Karen A.; Eastman, Jason D.; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Anderson, David. R.; Barclay, Thomas; Bouchy, François; Burt, Jennifer A.; Butler, R. Paul; Caldwell, Douglas A.; Collins, Kevin I.; Crane, Jeffrey D.; Dorn, Caroline; Flowers, Erin; Haldemann, Jonas; Helled, Ravit; Hellier, Coel; Jensen, Eric L. N.; Kane, Stephen R.; Law, Nicholas; Lissauer, Jack J.; Mann, Andrew W.; Marmier, Maxime; Nielsen, Louise Dyregaard; Rose, Mark E.; Shectman, Stephen A.; Shporer, Avi; Torres, Guillermo; Wang, Sharon X.; Wolfgang, Angie; Wong, Ian; Ziegler, Carl
Bibliographical reference
The Astronomical Journal
Advertised on:
8
2020
Citations
28
Refereed citations
26
Description
The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby stars. Here, we present the detection and mass measurement of a small, short-period (≍4 days) transiting planet around the bright (V = 7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a long-period (∼1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16 ± 0.08 R⊕ and a mass of ${7.25}_{-1.12}^{+1.19}$ M⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period, not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density of the transiting planet is 3.97 g cm-3, which is low enough to suggest that the planet has at least a small volatile envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness, planet period, and location of the planet near both the "radius gap" and the "hot Neptune desert," HD 86226c is an interesting candidate for transmission spectroscopy to further refine its composition. * This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Related projects
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago