Two decades of optical timing of the shortest-period binary star system HM Cancri

Munday, James; Marsh, T. R.; Hollands, Mark; Pelisoli, Ingrid; Steeghs, Danny; Hakala, Pasi; Breedt, Elmé; Brown, Alex; Dhillon, V. S.; Dyer, Martin J.; Green, Matthew; Kerry, Paul; Littlefair, S. P.; Parsons, Steven G.; Sahman, Dave; Somjit, Sorawit; Sukaum, Boonchoo; Wild, James
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
2
2023
Number of authors
18
IAC number of authors
1
Citations
9
Refereed citations
7
Description
The shortest-period binary star system known to date, RX J0806.3+1527 (HM Cancri), has now been observed in the optical for more than two decades. Although it is thought to be a double degenerate binary undergoing mass transfer, an early surprise was that its orbital frequency, f0, is currently increasing as the result of gravitational wave radiation. This is unusual since it was expected that the mass donor was degenerate and would expand on mass loss, leading to a decreasing f0. We exploit two decades of high-speed photometry to precisely quantify the trajectory of HM Cancri, allowing us to find that $\ddot{f}_0$ is negative, where $\ddot{f}_0~=~(-5.38\pm 2.10)\times 10^{-27}$ Hz s-2. Coupled with our positive frequency derivative, we show that mass transfer is counteracting gravitational-wave dominated orbital decay and that HM Cancri will turn around within 2100 ± 800 yr from now. We present Hubble Space Telescope ultra-violet spectra which display Lyman-α absorption, indicative of the presence of hydrogen accreted from the donor star. We use these pieces of information to explore a grid of permitted donor and accretor masses with the Modules for Experiments in Stellar Astrophysics suite, finding models in good accordance with many of the observed properties for a cool and initially hydrogen-rich extremely low mass white dwarf (≈0.17 M⊙) coupled with a high-accretor mass white dwarf (≈1.0 M⊙). Our measurements and models affirm that HM Cancri is still one of the brightest verification binaries for the Laser Interferometer Space Antenna spacecraft.
Related projects
Black hole in outburst
Black holes, neutron stars, white dwarfs and their local environment

Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most

Montserrat
Armas Padilla