An ultrahot Neptune in the Neptune desert

Jenkins, James S.; Díaz, Matías R.; Kurtovic, Nicolás T.; Espinoza, Néstor; Vines, Jose I.; Rojas, Pablo A. Peña; Brahm, Rafael; Torres, Pascal; Cortés-Zuleta, Pía; Soto, Maritza G.; Lopez, Eric D.; King, George W.; Wheatley, Peter J.; Winn, Joshua N.; Ciardi, David R.; Ricker, George; Vanderspek, Roland; Latham, David W.; Seager, Sara; Jenkins, Jon M.; Beichman, Charles A.; Bieryla, Allyson; Burke, Christopher J.; Christiansen, Jessie L.; Henze, Christopher E.; Klaus, Todd C.; McCauliff, Sean; Mori, Mayuko; Narita, Norio; Nishiumi, Taku; Tamura, Motohide; de Leon, Jerome Pitogo; Quinn, Samuel N.; Villaseñor, Jesus Noel; Vezie, Michael; Lissauer, Jack J.; Collins, Karen A.; Collins, Kevin I.; Isopi, Giovanni; Mallia, Franco; Ercolino, Andrea; Petrovich, Cristobal; Jordán, Andrés; Acton, Jack S.; Armstrong, David J.; Bayliss, Daniel; Bouchy, François; Belardi, Claudia; Bryant, Edward M.; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Cooke, Benjamin F.; Eigmüller, Philipp; Erikson, Anders; Foxell, Emma; Gänsicke, Boris T.; Gill, Samuel; Gillen, Edward; Günther, Maximilian N.; Goad, Michael R.; Hooton, Matthew J.; Jackman, James A. G.; Louden, Tom; McCormac, James; Moyano, Maximiliano; Nielsen, Louise D.; Pollacco, Don; Queloz, Didier; Rauer, Heike; Raynard, Liam; Smith, Alexis M. S.; Tilbrook, Rosanna H.; Titz-Weider, Ruth; Turner, Oliver; Udry, Stéphane; Walker, Simon. R.; Watson, Christopher A.; West, Richard G.; Palle, Enric; Ziegler, Carl; Law, Nicholas; Mann, Andrew W.
Bibliographical reference

Nature Astronomy

Advertised on:
0
2020
Number of authors
84
IAC number of authors
2
Citations
47
Refereed citations
44
Description
About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet1,2. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite3 revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0-2.9+2.7?% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (Vmag = 9.8).
Related projects
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago