Variability of OB stars from TESS southern Sectors 1-13 and high-resolution IACOB and OWN spectroscopy

Burssens, S.; Simón-Díaz, S.; Bowman, D. M.; Holgado, G.; Michielsen, M.; de Burgos, A.; Castro, N.; Barbá, R. H.; Aerts, C.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
7
2020
Number of authors
9
IAC number of authors
3
Citations
73
Refereed citations
61
Description
Context. The lack of high-precision long-term continuous photometric data for large samples of stars has impeded the large-scale exploration of pulsational variability in the OB star regime. As a result, the candidates for in-depth asteroseismic modelling have remained limited to a few dozen dwarfs. The TESS nominal space mission has surveyed the southern sky, including parts of the galactic plane, yielding continuous data across at least 27 d for hundreds of OB stars.
Aims: We aim to couple TESS data in the southern sky with ground-based spectroscopy to study the variability in two dimensions, mass and evolution. We focus mainly on the presence of coherent pulsation modes that may or may not be present in the predicted theoretical instability domains and unravel all frequency behaviour in the amplitude spectra of the TESS data.
Methods: We compose a sample of 98 OB-type stars observed by TESS in Sectors 1-13 and with available multi-epoch, high-resolution spectroscopy gathered by the IACOB and OWN surveys. We present the short-cadence 2 min light curves of dozens of OB-type stars, which have one or more spectra in the IACOB or OWN database. Based on these light curves and their Lomb-Scargle periodograms, we performed variability classification and frequency analysis. We placed the stars in the spectroscopic Hertzsprung-Russell diagram to interpret the variability in an evolutionary context.
Results: We deduce the diverse origins of the mmag-level variability found in all of the 98 OB stars in the TESS data. We find among the sample several new variable stars, including three hybrid pulsators, three eclipsing binaries, high frequency modes in a Be star, and potential heat-driven pulsations in two Oe stars.
Conclusions: We identify stars for which future asteroseismic modelling is possible, provided mode identification is achieved. By comparing the position of the variables to theoretical instability strips, we discuss the current shortcomings in non-adiabatic pulsation theory and the distribution of pulsators in the upper Hertzsprung-Russell diagram.

Based on observations made with the Nordic Optical Telescope (FIES), operated by NOTSA, and the Mercator Telescope (HERMES), operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias. In addition, observations collected with the FEROS spectrograph at the La Silla observatory in the framework of the OWN survey were used.
Related projects
Projets' image
Physical properties and evolution of Massive Stars

This project aims at the searching, observation and analysis of massive stars in nearby galaxies to provide a solid empirical ground to understand their physical properties as a function of those key parameters that gobern their evolution (i.e. mass, spin, metallicity, mass loss, and binary interaction). Massive stars are central objects to

Sergio
Simón Díaz