Bibcode
                                    
                            Frias Castillo, Marta; Hodge, Jacqueline; Rybak, Matus; van der Werf, Paul; Smail, Ian; Birkin, Jack E.; Chen, Chian-Chou; Chapman, Scott C.; Hill, Ryley; Lagos, Claudia del P.; Liao, Cheng-Lin; da Cunha, Elisabete; Calistro Rivera, Gabriela; Chen, Jianhang; Jiménez-Andrade, E. F.; Murphy, Eric J.; Scott, Douglas; Swinbank, A. M.; Walter, Fabian; Ivison, R. J.; Dannerbauer, Helmut
    Bibliographical reference
                                    The Astrophysical Journal
Advertised on:
    
                        3
            
                        2023
            
  Journal
                                    
                            Citations
                                    26
                            Refereed citations
                                    22
                            Description
                                    We present the initial results of an ongoing survey with the Karl G. Jansky Very Large Array targeting the CO(J = 1-0) transition in a sample of 30 submillimeter-selected, dusty star-forming galaxies (SFGs) at z = 2-5 with existing mid-J CO detections from the Atacama Large Millimeter/submillimeter Array and NOrthern Extended Millimeter Array, of which 17 have been fully observed. We detect CO(1-0) emission in 11 targets, along with three tentative (~1.5σ-2σ) detections; three galaxies are undetected. Our results yield total molecular gas masses of 6-23 × 1010 (α CO/1) M ⊙, with gas mass fractions, f gas = M mol/(M *+M mol), of 0.1-0.8 and a median depletion time of (140 ± 70) Myr. We find median CO excitation ratios of r 31 = 0.75 ± 0.39 and r 41 = 0.63 ± 0.44, with significant scatter. We find no significant correlation between the excitation ratio and a number of key parameters such as redshift, CO(1-0) line width, or ΣSFR. We only find a tentative positive correlation between r 41 and the star-forming efficiency, but we are limited by our small sample size. Finally, we compare our results to predictions from the SHARK semi-analytical model, finding a good agreement between the molecular gas masses, depletion times, and gas fractions of our sources and their SHARK counterparts. Our results highlight the heterogeneous nature of the most massive SFGs at high redshift, and the importance of CO(1-0) observations to robustly constrain their total molecular gas content and interstellar medium properties.
                            Related projects
                 
Molecular Gas and Dust in Galaxies Across Cosmic Time
            
    Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of
            
            Helmut
            
                        Dannerbauer