The ACS LCID Project. X. The Star Formation History of IC 1613: Revisiting the Over-cooling Problem

Skillman, E. D.; Hidalgo, S. L.; Weisz, Daniel R.; Monelli, M.; Gallart, C.; Aparicio, A.; Bernard, Edouard J.; Boylan-Kolchin, Michael; Cassisi, Santi; Cole, Andrew A.; Dolphin, Andrew E.; Ferguson, Henry C.; Mayer, Lucio; Navarro, Julio F.; Stetson, Peter B.; Tolstoy, Eline
Bibliographical reference

The Astrophysical Journal, Volume 786, Issue 1, article id. 44, 12 pp. (2014).

Advertised on:
5
2014
Number of authors
16
IAC number of authors
4
Citations
77
Refereed citations
65
Description
We present an analysis of the star formation history (SFH) of a field near the half-light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ~1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low-mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions that are too low today (the "over-cooling problem"). The depth of the present photometry of IC 1613 shows that, at a resolution of ~1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 10505.
Related projects
NGC 2808 Globular Cluster
Milky Way and Nearby Galaxies
The general aim of the project is to research the structure, evolutionary history and formation of galaxies through the study of their resolved stellar populations, both from photometry and spectroscopy. The group research concentrates in the most nearby objects, namely the Local Group galaxies including the Milky Way and M33 under the hypothesis
Martín
López Corredoira
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group
Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy
Matteo
Monelli