Bayesian bulge-disc decomposition of galaxy images

Argyle, J. J.; Méndez-Abreu, J.; Wild, V.; Mortlock, D. J.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 479, Issue 3, p.3076-3093

Advertised on:
9
2018
Number of authors
4
IAC number of authors
1
Citations
6
Refereed citations
5
Description
We introduce PHI, a fully Bayesian Markov chain Monte Carlo algorithm designed for the structural decomposition of galaxy images. PHI uses a triple layer approach to effectively and efficiently explore the complex parameter space. Combining this with the use of priors to prevent non-physical models, PHI offers a number of significant advantages for estimating surface brightness profile parameters over traditional optimization algorithms. We apply PHI to a sample of synthetic galaxies with Sloan Digital Sky Survey (SDSS)-like image properties to investigate the effect of galaxy properties on our ability to recover unbiased and well-constrained structural parameters. In two-component bulge+disc galaxies, we find that the bulge structural parameters are recovered less well than those of the disc, particularly when the bulge contributes a lower fraction to the luminosity, or is barely resolved with respect to the pixel scale or point spread function (PSF). There are few systematic biases, apart from for bulge+disc galaxies with large bulge Sérsic parameter, n. On application to SDSS images, we find good agreement with other codes, when run on the same images with the same masks, weights, and PSF. Again, we find that bulge parameters are the most difficult to constrain robustly. Finally, we explore the use of a Bayesian information criterion method for deciding whether a galaxy has one or two components.
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu