The Carina Project. VI. The Helium-burning Variable Stars

Coppola, G.; Stetson, P. B.; Marconi, M.; Bono, G.; Ripepi, V.; Fabrizio, M.; Dall'Ora, M.; Musella, I.; Buonanno, R.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Monelli, M.; Nonino, M.; Pulone, L.; Thévenin, F.; Walker, A. R.
Bibliographical reference

The Astrophysical Journal, Volume 775, Issue 1, article id. 6, 12 pp. (2013).

Advertised on:
9
2013
Number of authors
17
IAC number of authors
1
Citations
24
Refereed citations
22
Description
We present new optical (BVI) time-series data for the evolved variable stars in the Carina dwarf spheroidal galaxy. The quality of the data and the observing strategy allowed us to identify 14 new variable stars. Eight out of the 14 are RR Lyrae (RRL) stars, 4 are Anomalous Cepheids (ACs), and 2 are geometrical variables. Comparison of the period distribution for the entire sample of RRLs with similar distributions in nearby dwarf spheroidal galaxies and in the Large Magellanic Cloud indicates that the old stellar populations in these systems share similar properties. This finding is also supported by the RRL distribution in the Bailey diagram. On the other hand, the period distribution and the Bailey diagram of ACs display significant differences among the above stellar systems. This evidence suggests that the properties of intermediate-age stellar populations might be affected both by environmental effects and structural parameters. We use the BV Period-Wesenheit (PW) relation of RRLs together with evolutionary prescriptions and find a true distance modulus of 20.09 ± 0.07 (intrinsic) ± 0.1 (statistical) mag that agrees quite well with similar estimates available in the literature. We identified four peculiar variables. Taking into account their position in the Bailey diagram and in the BV PW relation, two of them (V14 and V149) appear to be candidate ACs, while two (V158 and V182) might be peculiar RRLs. In particular, the variable V158 has a period and a V-band amplitude very similar to the low-mass RRL—RRLR-02792—recently identified by Pietrzyński et al. in the Galactic bulge. Based on images collected with the MOSAICII camera available at the CTIO 4 m Blanco telescope, La Serena (2003B-0051, 2004B-0227, and 2005B-0092; PI: A. R. Walker) and in part with the WFI available at the 2.2 m MPG/ESO telescope (A064.L-0327) and with images obtained from the ESO/ST-ECF Science Archive Facility.
Related projects
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group

Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy

Matteo
Monelli