The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars

Schweitzer, A.; Passegger, V. M.; Cifuentes, C.; Béjar, V. J. S.; Cortés-Contreras, M.; Caballero, J. A.; del Burgo, C.; Czesla, S.; Kürster, M.; Montes, D.; Zapatero Osorio, M. R.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.; Anglada-Escudé, G.; Bauer, F. F.; Dreizler, S.; Jeffers, S. V.; Guenther, E. W.; Henning, T.; Kaminski, A.; Lafarga, M.; Marfil, E.; Morales, J. C.; Schmitt, J. H. M. M.; Seifert, W.; Solano, E.; Tabernero, H. M.; Zechmeister, M.
Bibliographical reference

Astronomy and Astrophysics, Volume 625, id.A68, 16 pp.

Advertised on:
5
2019
Number of authors
31
IAC number of authors
1
Citations
152
Refereed citations
144
Description
Aims: We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R > 80 000) spectroscopic survey has been used to derive these fundamental stellar parameters. Methods: We derived the radii using Stefan-Boltzmann's law. We obtained the required effective temperatures Teff from a spectral analysis and we obtained the required luminosities L from integrated broadband photometry together with the Gaia DR2 parallaxes. The mass was then determined using a mass-radius relation that we derived from eclipsing binaries known in the literature. We compared this method with three other methods: (1) We calculated the mass from the radius and the surface gravity log g, which was obtained from the same spectral analysis as Teff. (2) We used a widely used infrared mass-magnitude relation. (3) We used a Bayesian approach to infer stellar parameters from the comparison of the absolute magnitudes and colors of our targets with evolutionary models. Results: Between spectral types M0 V and M7 V our radii cover the range 0.1 R⊙ < R < 0.6 R⊙ with an error of 2-3% and our masses cover 0.09 ℳ⊙ <ℳ< 0.6ℳ⊙ with an error of 3-5%. We find good agreement between the masses determined with these different methods for most of our targets. Only the masses of very young objects show discrepancies. This can be well explained with the assumptions that we used for our methods. Table B.1 (stellar parameters) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/625/A68
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rafael
Rebolo López
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago