COLDz: A High Space Density of Massive Dusty Starburst Galaxies ∼1 Billion Years after the Big Bang

Riechers, Dominik A.; Hodge, Jacqueline A.; Pavesi, Riccardo; Daddi, Emanuele; Decarli, Roberto; Ivison, Rob J.; Sharon, Chelsea E.; Smail, Ian; Walter, Fabian; Aravena, Manuel; Capak, Peter L.; Carilli, Christopher L.; Cox, Pierre; Cunha, Elisabete da; Dannerbauer, Helmut; Dickinson, Mark; Neri, Roberto; Wagg, Jeff
Bibliographical reference

The Astrophysical Journal

Advertised on:
6
2020
Number of authors
18
IAC number of authors
1
Citations
70
Refereed citations
61
Description
We report the detection of CO(J = 2 → 1) emission from three massive dusty starburst galaxies at z > 5 through molecular line scans in the NSF's Karl G. Jansky Very Large Array (VLA) CO Luminosity Density at High Redshift (COLDz) survey. Redshifts for two of the sources, HDF 850.1 (z = 5.183) and AzTEC-3 (z = 5.298), were previously known. We revise a previous redshift estimate for the third source GN10 (z = 5.303), which we have independently confirmed through detections of CO J = 1 → 0, 5 → 4, 6 → 5, and [C II] 158 μm emission with the VLA and the NOrthern Extended Milllimeter Array. We find that two currently independently confirmed CO sources in COLDz are "optically dark", and that three of them are dust-obscured galaxies at z > 5. Given our survey area of ∼60 arcmin2, our results appear to imply a ∼6-55 times higher space density of such distant dusty systems within the first billion years after the Big Bang than previously thought. At least two of these z > 5 galaxies show star formation rate surface densities consistent with so-called "maximum" starbursts, but we find significant differences in CO excitation between them. This result may suggest that different fractions of the massive gas reservoirs are located in the dense, star-forming nuclear regions—consistent with the more extended sizes of the [C II] emission compared to the dust continuum and higher [C II]-to-far-infrared luminosity ratios in those galaxies with lower gas excitation. We thus find substantial variations in the conditions for star formation between z > 5 dusty starbursts, which typically have dust temperatures that are ∼57% ± 25% warmer than starbursts at z = 2-3 due to their enhanced star formation activity.
Related projects
Galaxy proto-cluster
Molecular Gas and Dust in Galaxies Across Cosmic Time
Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of
Helmut
Dannerbauer