Bibcode
Brook, Chris B.; Kawata, Daisuke; Gibson, Brad K.; Gallart, Carme; Vicente, Andrés
Bibliographical reference
Monthly Notices of the Royal Astronomical Society
Advertised on:
4
2020
Citations
12
Refereed citations
11
Description
The Milky Way underwent its last significant merger ten billion years ago, when the Gaia-Enceladus-Sausage (GES) was accreted. Accreted GES stars and progenitor stars born prior to the merger make up the bulk of the inner halo. Even though these two main populations of halo stars have similar durations of star formation prior to their merger, they differ in [α/Fe]-[Fe/H] space, with the GES population bending to lower [α/Fe] at a relatively low value of [Fe/H]. We use cosmological simulations of a 'Milky Way' to argue that the different tracks of the halo stars through the [α/Fe]-[Fe/H] plane are due to a difference in their star formation history and efficiency, with the lower mass GES having its low and constant star formation regulated by feedback whilst the higher mass main progenitor has a higher star formation rate prior to the merger. The lower star formation efficiency of GES leads to lower gas pollution levels, pushing [α/Fe]-[Fe/H] tracks to the left. In addition, the increasing star formation rate maintains a higher relative contribution of Type II SNe to Type Ia SNe for the main progenitor population that formed during the same time period, thus maintaining a relatively high [α/Fe]. Thus the different positions of the downturns in the [α/Fe]-[Fe/H] plane for the GES stars are not reflective of different star formation durations, but instead reflect different star formation efficiencies.
Related projects
Numerical Astrophysics: Galaxy Formation and Evolution
How galaxies formed and evolved through cosmic time is one of the key questions of modern astronomy and astrophysics. Cosmological time- and length-scales are so large that the evolution of individual galaxies cannot be directly observed. Only through numerical simulations can one follow the emergence of cosmic structures within the current
Claudio
Dalla Vecchia
Galaxy Evolution in the Local Group
Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy
Matteo
Monelli