Fast-to-Alfvén Mode Conversion Mediated by the Hall Current. I. Cold Plasma Model

Cally, P. S.; Khomenko, E.
Bibliographical reference

The Astrophysical Journal, Volume 814, Issue 2, article id. 106, 11 pp. (2015).

Advertised on:
12
2015
Number of authors
2
IAC number of authors
1
Citations
29
Refereed citations
28
Description
The photospheric temperature minimum in the Sun and solar-like stars is very weakly ionized, with an ionization fraction f as low as 10‑4. In galactic star-forming regions, f can be 10‑10 or lower. Under these circumstances, the Hall current can couple low-frequency Alfvén and magnetoacoustic waves via the dimensionless Hall parameter ε =ω /{{{Ω }}}{{i}}f, where ω is the wave frequency and {{{Ω }}}{{i}} is the mean ion gyrofrequency. This is analyzed in the context of a cold (zero-β) plasma and in less detail for a warm plasma. It is found that Hall coupling preferentially occurs where the wavevector is nearly field-aligned. In these circumstances, Hall coupling in theory produces a continual oscillation between fast and Alfvén modes as the wave passes through the weakly ionized region. At low frequencies (mHz), characteristic of solar and stellar normal modes, ɛ is probably too small for more than a fraction of one oscillation to occur. On the other hand, the effect may be significant at the far higher frequencies (Hz) associated with magnetic reconnection events. In another context, characteristic parameters for star-forming gas clouds suggest that {O}(1) or more full oscillations may occur in one cloud crossing. This mechanism is not expected to be effective in sunspots, due to their high ion gyrofrequencies and Alfvén speeds, since the net effect depends inversely on both and therefore inverse quadratically on field strength.
Related projects
Project Image
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Tobías
Felipe García