Fast spectrophotometry of WD 1145+017

Izquierdo, P.; Rodríguez-Gil, P.; Gänsicke, Boris T.; Mustill, Alexander J.; Toloza, Odette; Tremblay, Pier-Emmanuel; Wyatt, Mark; Chote, Paul; Eggl, Siegfried; Farihi, Jay; Koester, Detlev; Lyra, Wladimir; Manser, Christopher J.; Marsh, Thomas R.; Pallé, E.; Raddi, Roberto; Veras, Dimitri; Villaver, Eva; Portegies Zwart, Simon
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 481, Issue 1, p.703-714

Advertised on:
11
2018
Number of authors
19
IAC number of authors
3
Citations
29
Refereed citations
27
Description
WD 1145+017 is currently the only white dwarf known to exhibit periodic transits of planetary debris as well as absorption lines from circumstellar gas. We present the first simultaneous fast optical spectrophotometry and broad-band photometry of the system, obtained with the Gran Telescopio Canarias (GTC) and the Liverpool Telescope, respectively. The observations spanned 5.5 h, somewhat longer than the 4.5-h orbital period of the debris. Dividing the GTC spectrophotometry into five wavelength bands reveals no significant colour differences, confirming grey transits in the optical. We argue that absorption by an optically thick structure is a plausible alternative explanation for the achromatic nature of the transits that can allow the presence of small-sized (˜µm) particles. The longest (87 min) and deepest (50 per cent attenuation) transit recorded in our data exhibits a complex structure around minimum light that can be well modelled by multiple overlapping dust clouds. The strongest circumstellar absorption line, Fe II λ5169, significantly weakens during this transit, with its equivalent width reducing from a mean out-of-transit value of 2 to 1 Å in-transit, supporting spatial correlation between the circumstellar gas and dust. Finally, we made use of the Gaia Data Release 2 and archival photometry to determine the white dwarf parameters. Adopting a helium-dominated atmosphere containing traces of hydrogen and metals, and a reddening E(B - V) = 0.01 we find T_eff=15 020 ± 520 K, log g = 8.07 ± 0.07, corresponding to M_WD=0.63± 0.05 M_{⊙} and a cooling age of 224 ± 30 Myr.
Related projects
Representación de la variable cataclísmica SS Cygni (Chris Moran)
Binary Stars
The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines
Pablo
Rodríguez Gil
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago