Fundamental Parameters and Chemical Composition of Arcturus

Ramírez, I.; Allende-Prieto, C.
Bibliographical reference

The Astrophysical Journal, Volume 743, Issue 2, article id. 135 (2011).

Advertised on:
12
2011
Number of authors
2
IAC number of authors
1
Citations
170
Refereed citations
159
Description
We derive a self-consistent set of atmospheric parameters and abundances of 17 elements for the red giant star Arcturus: T eff = 4286 ± 30 K, log g = 1.66 ± 0.05, and [Fe/H] = -0.52 ± 0.04. The effective temperature was determined using model atmosphere fits to the observed spectral energy distribution from the blue to the mid-infrared (0.44 to 10 μm). The surface gravity was calculated using the trigonometric parallax of the star and stellar evolution models. A differential abundance analysis relative to the solar spectrum allowed us to derive iron abundances from equivalent width measurements of 37 Fe I and 9 Fe II lines, unblended in the spectra of both Arcturus and the Sun; the [Fe/H] value adopted is derived from Fe I lines. We also determine the mass, radius, and age of Arcturus: M = 1.08 ± 0.06 M &sun;, R = 25.4 ± 0.2 R &sun;, and τ = 7.1+1.5 - 1.2 Gyr. Finally, abundances of the following elements are measured from an equivalent width analysis of atomic features: C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. We find the chemical composition of Arcturus typical of that of a local thick-disk star, consistent with its kinematics.
Related projects
spectrum of mercury lamp
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto