Bibcode
Wilson, C. D.; Warren, B. E.; Irwin, J.; Knapen, J. H.; Israel, F. P.; Serjeant, S.; Attewell, D.; Bendo, G. J.; Brinks, E.; Butner, H. M.; Clements, D. L.; Leech, J.; Matthews, H. E.; Mühle, S.; Mortier, A. M. J.; Parkin, T. J.; Petitpas, G.; Tan, B. K.; Tilanus, R. P. J.; Usero, A.; Vaccari, M.; van der Werf, P.; Wiegert, T.; Zhu, M.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 410, Issue 3, pp. 1409-1422.
Advertised on:
1
2011
Citations
48
Refereed citations
45
Description
An analysis of large-area CO J= 3-2 maps from the James Clerk Maxwell
Telescope for 12 nearby spiral galaxies reveals low velocity dispersions
in the molecular component of the interstellar medium. The three lowest
luminosity galaxies show a relatively flat velocity dispersion as a
function of radius while the remaining nine galaxies show a central peak
with a radial fall-off within 0.2-0.4r25. Correcting for the
average contribution due to the internal velocity dispersions of a
population of giant molecular clouds, the average cloud-cloud velocity
dispersion across the galactic discs is 6.1 ± 1.0 km
s-1 (standard deviation of 2.9 km s-1), in
reasonable agreement with previous measurements for the Galaxy and M33.
The cloud-cloud velocity dispersion derived from the CO data is on
average two times smaller than the H I velocity dispersion measured in
the same galaxies. The low cloud-cloud velocity dispersion implies that
the molecular gas is the critical component determining the stability of
the galactic disc against gravitational collapse, especially in those
regions of the disc which are H2 dominated. The cloud-cloud
velocity dispersion shows a significant positive correlation with both
the far-infrared luminosity, which traces the star formation activity,
and the K-band absolute magnitude, which traces the total stellar mass.
For three galaxies in the Virgo cluster, smoothing the data to a
resolution of 4.5 kpc (to match the typical resolution of high-redshift
CO observations) increases the measured velocity dispersion by roughly a
factor of 2, comparable to the dispersion measured recently in a normal
galaxy at z= 1. This comparison suggests that the mass and star
formation rate surface densities may be similar in galaxies from z= 0 to
1 and that the high star formation rates seen at z= 1 may be partly due
to the presence of physically larger molecular gas discs.
Related projects
Spiral Galaxies: Evolution and Consequences
Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of
Johan Hendrik
Knapen Koelstra