Morphology and environment of galaxies with disc breaks in the S4G and NIRS0S

Laine, J.; Laurikainen, E.; Salo, H.; Comerón, S.; Buta, R. J.; Zaritsky, D.; Athanassoula, E.; Bosma, A.; Muñoz-Mateos, J.-C.; Gadotti, D. A.; Hinz, J. L.; Erroz-Ferrer, S.; Gil de Paz, A.; Kim, T.; Menéndez-Delmestre, K.; Mizusawa, T.; Regan, M. W.; Seibert, M.; Sheth, K.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 441, Issue 3, p.1992-2012

Advertised on:
7
2014
Number of authors
19
IAC number of authors
1
Citations
62
Refereed citations
56
Description
We study the surface brightness profiles of disc galaxies in the 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies (S4G) and Ks-band images from the Near-Infrared S0-Sa galaxy Survey (NIRS0S). We particularly connect properties of single exponential (type I), downbending double exponential (type II), and upbending double exponential (type III) disc profile types, to structural components of galaxies by using detailed morphological classifications, and size measurements of rings and lenses. We also study how the local environment of the galaxies affects the profile types by calculating parameters describing the environmental density and the tidal interaction strength. We find that in majority of type II profiles the break radius is connected with structural components such as rings, lenses, and spirals. The exponential disc sections of all three profile types, when considered separately, follow the disc scaling relations. However, the outer discs of type II, and the inner discs of type III, are similar in scalelength to the single exponential discs. Although the different profile types have similar mean environmental parameters, the scalelengths of the type III profiles show a positive correlation with the tidal interaction strength.
Related projects
Project Image
Spiral Galaxies: Evolution and Consequences
Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of
Johan Hendrik
Knapen Koelstra