Multiprobe cosmology from the abundance of SPT clusters and DES galaxy clustering and weak lensing

Bocquet, S.; Grandis, S.; Krause, E.; To, C.; Bleem, L. E.; Klein, M.; Mohr, J. J.; Schrabback, T.; Alarcon, A.; Alves, O.; Amon, A.; Andrade-Oliveira, F.; Baxter, E. J.; Bechtol, K.; Becker, M. R.; Bernstein, G. M.; Blazek, J.; Camacho, H.; Campos, A.; Carnero Rosell, A.; Carrasco Kind, M.; Cawthon, R.; Chang, C.; Chen, R.; Choi, A.; Cordero, J.; Crocce, M.; Davis, C.; DeRose, J.; Diehl, H. T.; Dodelson, S.; Doux, C.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elsner, F.; Elvin-Poole, J.; Everett, S.; Fang, X.; Ferté, A.; Fosalba, P.; Friedrich, O.; Frieman, J.; Gatti, M.; Giannini, G.; Gruen, D.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Herner, K.; Huang, H.; Huff, E. M.; Huterer, D.; Jarvis, M.; Kuropatkin, N.; Leget, P. -F.; Lemos, P.; Liddle, A. R.; MacCrann, N.; McCullough, J.; Muir, J.; Myles, J.; Navarro-Alsina, A.; Pandey, S.; Park, Y.; Porredon, A.; Prat, J.; Raveri, M.; Rollins, R. P.; Roodman, A.; Rosenfeld, R.; Rykoff, E. S.; Sánchez, C.; Sanchez, J.; Secco, L. F.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Troxel, M. A.; Tutusaus, I.; Varga, T. N.; Weaverdyck, N.; Wechsler, R. H.; Wu, H. -Y.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.; Abbott, T. M. C.; Ade, P. A. R.; Aguena, M.; Allam, S.; Allen, S. W.; Anderson, A. J.; Ansarinejad, B.; Austermann, J. E.; Bayliss, M.; Beall, J. A.; Bender, A. N.; Benson, B. A. et al.
Bibliographical reference

Physical Review D

Advertised on:
3
2025
Number of authors
219
IAC number of authors
1
Citations
1
Refereed citations
0
Description
Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements (3×2pt) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining Λ cold dark matter (ΛCDM) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure Ωm=0.300±0.017 and σ8=0.797±0.026. Compared to constraints from Planck primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 (1.2σ) for the two-parameter difference. We further obtain S8≡σ8(Ωm/0.3)0.5=0.796±0.013 which is lower than the Planck measurement at the 1.6σ level. The combined SPT cluster, DES 3×2pt, and Planck datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit ∑mν<0.25 eV on the sum of neutrino masses. Assuming a wCDM model, we constrain the dark energy equation of state parameter w=-1.15-0.17+0.23 and when combining with Planck primary CMB anisotropies, we recover w=-1.20-0.09+0.15, a 1.7σ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets.