Bibcode
Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Draine, B. T.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Grenier, I. A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 571, id.A11, 37 pp.
Advertised on:
11
2014
Journal
Citations
677
Refereed citations
619
Description
This paper presents an all-sky model of dust emission from the Planck
353, 545, and 857 GHz, and IRAS 100 μm data. Using a modified
blackbody fit to the data we present all-sky maps of the dust optical
depth, temperature, and spectral index over the 353-3000 GHz range. This
model is a good representation of the IRAS and Planck data at 5' between
353 and 3000 GHz (850 and 100 μm). It shows variations of the order
of 30% compared with the widely-used model of Finkbeiner, Davis, and
Schlegel. The Planck data allow us to estimate the dust temperature
uniformly over the whole sky, down to an angular resolution of 5',
providing an improved estimate of the dust optical depth compared to
previous all-sky dust model, especially in high-contrast molecular
regions where the dust temperature varies strongly at small scales in
response to dust evolution, extinction, and/or local production of
heating photons. An increase of the dust opacity at 353 GHz,
τ353/NH, from the diffuse to the denser
interstellar medium (ISM) is reported. It is associated with a decrease
in the observed dust temperature, Tobs, that could be due at
least in part to the increased dust opacity. We also report an excess of
dust emission at H i column densities lower than 1020
cm-2 that could be the signature of dust in the warm ionized
medium. In the diffuse ISM at high Galactic latitude, we report an
anticorrelation between τ353/NH and
Tobs while the dust specific luminosity, i.e., the total dust
emission integrated over frequency (the radiance) per hydrogen atom,
stays about constant, confirming one of the Planck Early Results
obtained on selected fields. This effect is compatible with the view
that, in the diffuse ISM, Tobs responds to spatial variations
of the dust opacity, due to variations of dust properties, in addition
to (small) variations of the radiation field strength. The implication
is that in the diffuse high-latitude ISM τ353 is not as
reliable a tracer of dust column density as we conclude it is in
molecular clouds where the correlation of τ353 with dust
extinction estimated using colour excess measurements on stars is
strong. To estimate Galactic E(B - V) in extragalactic fields at high
latitude we develop a new method based on the thermal dust radiance,
instead of the dust optical depth, calibrated to E(B - V) using
reddening measurements of quasars deduced from Sloan Digital Sky Survey
data.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López