Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Grain, J.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 536, id.A18
Advertised on:
12
2011
Journal
Citations
204
Refereed citations
195
Description
Using Planck maps of six regions of low Galactic dust emission with a
total area of about 140 deg2, we determine the angular power
spectra of cosmic infrared background (CIB) anisotropies from multipole
ℓ = 200 to ℓ = 2000 at 217, 353, 545 and 857 GHz. We use 21-cm
observations of Hi as a tracer of thermal dust emission to reduce the
already low level of Galactic dust emission and use the 143 GHz Planck
maps in these fields to clean out cosmic microwave background
anisotropies. Both of these cleaning processes are necessary to avoid
significant contamination of the CIB signal. We measure correlated CIB
structure across frequencies. As expected, the correlation decreases
with increasing frequency separation, because the contribution of
high-redshift galaxies to CIB anisotropies increases with wavelengths.
We find no significant difference between the frequency spectrum of the
CIB anisotropies and the CIB mean, with ΔI / I = 15% from 217 to
857 GHz. In terms of clustering properties, the Planck data alone rule
out the linear scale- and redshift-independent bias model. Non-linear
corrections are significant. Consequently, we develop an alternative
model that couples a dusty galaxy, parametric evolution model with a
simple halo-model approach. It provides an excellent fit to the measured
anisotropy angular power spectra and suggests that a different halo
occupation distribution is required at each frequency, which is
consistent with our expectation that each frequency is dominated by
contributions from different redshifts. In our best-fit model, half of
the anisotropy power at ℓ = 2000 comes from redshifts z < 0.8 at
857 GHz and z < 1.5 at 545 GHz, while about 90% come from redshifts z
> 2 at 353 and 217 GHz, respectively.
Corresponding author: G. Lagache, e-mail: guilaine.lagache [at] ias.u-psud.fr (guilaine[dot]lagache[at]ias[dot]u-psud[dot]fr)
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López