QUIJOTE Scientific Results - XVII. Studying the anomalous microwave emission in the Andromeda Galaxy with QUIJOTE-MFI

Fernández-Torreiro, M.; Génova-Santos, R. T.; Rubiño-Martín, J. A.; López-Caraballo, C. H.; Peel, M. W.; Arce-Tord, C.; Rebolo, R.; Artal, E.; Ashdown, M.; Barreiro, R. B.; Casas, F. J.; de la Hoz, E.; Guidi, F.; Herranz, D.; Hoyland, R.; Lasenby, A.; Martínez-Gonzalez, E.; Piccirillo, L.; Poidevin, F.; Ruiz-Granados, B.; Tramonte, D.; Vansyngel, F.; Vielva, P.; Watson, R. A.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
2
2024
Number of authors
24
IAC number of authors
11
Citations
6
Refereed citations
4
Description
The Andromeda Galaxy (M31) is the Local Group galaxy that is most similar to the Milky Way (MW). The similarities between the two galaxies make M31 useful for studying integrated properties common to spiral galaxies. We use the data from the recent QUIJOTE-MFI Wide Survey, together with new raster observations focused on M31, to study its integrated emission. The addition of raster data improves the sensitivity of QUIJOTE-MFI maps by almost a factor 3. Our main interest is to confirm if anomalous microwave emission (AME) is present in M31, as previous studies have suggested. To do so, we built the integrated spectral energy distribution of M31 between 0.408 and 3000 GHz. We then performed a component separation analysis taking into account synchrotron, free-free, AME, and thermal dust components. AME in M31 is modelled as a log-normal distribution with maximum amplitude, AAME, equal to 1.03 ± 0.32 Jy. It peaks at ${\nu _{\rm AME}}=17.2\pm 3.2{\rm \, GHz}{}$ with a width of WAME = 0.58 ± 0.16. Both the Akaike and Bayesian information criteria find the model without AME to be less than 1 per cent as probable as the one taking AME into consideration. We find that the AME emissivity per 100 $\mu$m intensity in M31 is ${\epsilon _{\rm AME}^{\rm 28.4\, GHz}}=9.6\pm 3.1\,\mu$K MJy-1 sr, similar to that of the MW. We also provide the first upper limits for the AME polarization fraction in an extragalactic object. M31 remains the only galaxy where an AME measurement has been made of its integrated spectrum.
Related projects
Full-sky map showing the spatial distribution of the primary anisotropies of the Cosmic Microwave Background (generated 380,000 years after the Big Bang) derived from observations of the Planck satellite
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López
The QUIJOTE experiment at the Teide Observatory
QUIJOTE CMB Experiment (Q-U-I JOint TEnerife CMB Experiment)
QUIJOTE es un programa de dos telescopios y su batería de instrumentos, instalados en el Observatorio del Teide, dedicados fundamentalmente a la caracterización de la polarización del Fondo Cósmico de Microondas, en el rango de frecuencias de 10-42 GHz.
José Alberto
Rubiño Martín