A Reemerging Bright Soft X-Ray State of the Changing-look Active Galactic Nucleus 1ES 1927+654: A Multiwavelength View

Ghosh, Ritesh; Laha, Sibasish; Meyer, Eileen; Roychowdhury, Agniva; Yang, Xiaolong; Acosta-Pulido, J. A.; Rakshit, Suvendu; Pandey, Shivangi; Becerra González, Josefa; Behar, Ehud; Gallo, Luigi C.; Panessa, Francesca; Bianchi, Stefano; La Franca, Fabio; Scepi, Nicolas; Begelman, Mitchell C.; Longinotti, Anna Lia; Lusso, Elisabeta; Oates, Samantha; Nicholl, Matt; Cenko, S. Bradley; O'Connor, Brendan; Hammerstein, Erica; Jose, Jincen; Gabányi, Krisztina Éva; Ricci, Federica; Chattopadhyay, Sabyasachi
Bibliographical reference

The Astrophysical Journal

Advertised on:
9
2023
Number of authors
27
IAC number of authors
2
Citations
0
Refereed citations
0
Description
1ES1927+654 is a nearby active galactic nucleus (AGN) that has shown an enigmatic outburst in optical/UV followed by X-rays, exhibiting strange variability patterns at timescales of months to years. Here we report the unusual X-ray, UV, and radio variability of the source in its postflare state (2022 January-2023 May). First, we detect an increase in the soft X-ray (0.3-2 keV) flux from 2022 May to 2023 May by almost a factor of 5, which we call the bright soft state. The hard X-ray 2-10 keV flux increased by a factor of 2, while the UV flux density did not show any significant changes (≤30%) in the same period. The integrated energy pumped into the soft and hard X-rays during this period of 11 months is ~3.57 × 1050 erg and 5.9 × 1049 erg, respectively. From the energetics, it is evident that whatever is producing the soft excess (SE) is pumping out more energy than either the UV or hard X-ray source. Since the energy source presumably is ultimately the accretion of matter onto the supermassive black hole, the SE-emitting region must be receiving the majority of this energy. In addition, the source does not follow the typical disk-corona relation found in AGNs, neither in the initial flare (from 2017 to 2019) nor in the current bright soft state (2022-2023). We found that the core (<1 pc) radio emission at 5 GHz gradually increased until 2022 March, but showed a dip in 2022 August. The Güdel-Benz relation (L radio/L X-ray ~ 10-5), however, is still within the expected range for radio-quiet AGNs, and further follow-up radio observations are currently being undertaken.
Related projects
Project Image
Particle Astrophysics

The MAGIC Collaboration is integrated by 20 research institutes and university departments from Armenia, Bulgaria, Finland, Germany, Italy, Poland, Spain, Switzerland and USA. The collaboration comprises two 17m diameter telescopes, located at the Roque de los Muchachos Observatory, designed to measure the Cherenkov radiation associated with

Ramón
García López
Project Image
Variability in Active Galactic Nuclei: Multifrecuency Studies

Active Galactic Nuclei (AGN) are characterized by a strong emission coming from a very compact region (only few pcs) at the galaxy center. Blazars form a class of AGN, characterized by high luminosity in a broad frequency range, from radiofrequencies to high energies (X-rays and γ-rays), as well as extreme variability and high polarization at

José Antonio
Acosta Pulido