Transiting exoplanets from the CoRoT space mission. XXVI. CoRoT-24: a transiting multiplanet system

Alonso, R.; Moutou, C.; Endl, M.; Almenara, J.-M.; Guenther, E. W.; Deleuil, M.; Hatzes, A.; Aigrain, S.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Cavarroc, C.; Cabrera, J.; Carpano, S.; Csizmadia, Sz.; Cochran, W. D.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Fruth, T.; Gandolfi, D.; Gillon, M.; Grziwa, S.; Guillot, T.; Hébrard, G.; Jorda, L.; Léger, A.; Lammer, H.; Lovis, C.; MacQueen, P. J.; Mazeh, T.; Ofir, A.; Ollivier, M.; Pasternacki, T.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tadeu dos Santos, M.; Tingley, B.; Titz-Weider, R.; Weingrill, J.; Wuchterl, G.
Bibliographical reference

Astronomy and Astrophysics, Volume 567, id.A112, 13 pp.

Advertised on:
7
2014
Number of authors
51
IAC number of authors
3
Citations
20
Refereed citations
19
Description
We present the discovery of a candidate multiply transiting system, the first one found in the CoRoT mission. Two transit-like features with periods of 5.11 and 11.76 d are detected in the CoRoT light curve around a main sequence K1V star of r = 15.1. If the features are due to transiting planets around the same star, these would correspond to objects of 3.7 ± 0.4 and 5.0 ± 0.5 R⊕ , respectively. Several radial velocities serve to provide an upper limit of 5.7 M⊕ for the 5.11 d signal and to tentatively measure a mass of 28+11-11 M⊕ for the object transiting with a 11.76 d period. These measurements imply low density objects, with a significant gaseous envelope. The detailed analysis of the photometric and spectroscopic data serves to estimate the probability that the observations are caused by transiting Neptune-sized planets as much as over 26 times higher than a blend scenario involving only one transiting planet and as much as over 900 times higher than a scenario involving two blends and no planets. The radial velocities show a long-term modulation that might be attributed to a 1.5 MJup planet orbiting at 1.8 AU from the host, but more data are required to determine the precise orbital parameters of this companion. The CoRoT space mission, launched on 27 December 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany, and Spain. Some of the observations were made with the HARPS spectrograph at ESO La Silla Observatory (184.C-0639) and with the HIRES spectrograph at the Keck Telescope (N035Hr, N143Hr 260 and N095Hr). Partly based on observations obtained at ESO Paranal Observatory, Chile (086.C-0235(A) and B).Tables 2-4 and Fig. 12 are available in electronic form at http://www.aanda.org
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago