Ultra-short Period Binaries from the Catalina Surveys

Drake, A. J.; Djorgovski, S. G.; García-Álvarez, D.; Graham, M. J.; Catelan, M.; Mahabal, A. A.; Donalek, C.; Prieto, J. L.; Torrealba, G.; Abraham, S.; Williams, R.; Larson, S.; Christensen, E.
Bibliographical reference

The Astrophysical Journal, Volume 790, Issue 2, article id. 157, 13 pp. (2014).

Advertised on:
8
2014
Number of authors
13
IAC number of authors
1
Citations
52
Refereed citations
48
Description
We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, Sloan Digital Sky Survey, and GALEX multi-color photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M dwarf+M dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool white dwarf (WD)+M dwarf binaries. Only a few such systems are currently known. Unlike warmer WD systems, their UV flux and optical colors and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically selected ultra-short period contact binary candidates and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.
Related projects
spectrum of mercury lamp
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto