General
Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy properties from the study of their resolved stars. Depending on their mass, stars can live as long as a Hubble time, thus allowing to study in exquisite detail how galaxies have evolved from the early Universe to the present time. This research is one of the main drivers of major international projects, both observational (such as the on-going Gaia mission and SDSS surveys, and the planned WHT/WEAVE, LSST, VISTA/4MOST, DESI, E-ELT/HARMONI, to name a few), and theoretical (such as Nihao, Magic and Auriga hydrodynamical cosmological simulations), in most of which members of our team are involved. This ensures that Galactic Archaelogy will be at the forefront of astronomical research for a long time.
The objective of this project is to understand the formation and evolution of galaxies of different morphological types, using the many local examples that can be resolved into individual stars, and which, therefore can be studied in a detail impossible elsewhere. In particular, the Local Group and its immediate surroundings contain about 80 galaxies of different morphological types. Among these, the largest are spiral galaxies (the Milky Way, M31 and M33), a dozen of them are (dwarf) irregulars and the rest are early-type systems. Thus, we can study galaxies of different morphological types, from the Milky Way down to the smallest galactic scales, which are those challenging our understanding of what a "galaxy" is.
We aim to derive their evolutionary history using a set of complementary techniques: I) using deep photometry reaching the old main sequence turn-offs, it is possible to derive the full star formation history over the entire galaxy's life; ii) spectroscopic studies of individual stars add direct information on the kinematics and chemical abundances of the different stellar populations; iii) for the most nearby systems, the inclusion of accurate astrometric measurements yields information on the distance (and thus absolute brightness), the orbital motion of the system and can even deliver the full 6D phase-space information of sub-samples of stars; iv) the study of variable stars such as Cepheids and RR Lyrae provide independent constraints on metallicities and ages of the populations they belong to. These observations offer invaluable, rich information, that can be interpreted using hydrodynamic cosmological simulations of galaxy formation that model a wide range of important physical processes.
Members
Results
Below a list of highlights from the group activities in 2020-2021. For a more general overview see publication list and this webpage.
1. Using HST data of the ultra-faint dwarf (UFD) Eridanus II, we determined (Gallart+2021) that its only star formatio event, occurred 13 Gyr ago, was very short (100-500Myr). The associated SNe energy could be enough to expel the remaining gas, casting doubts on the need to invoke cosmic reionization as the preferred explanation for the early quenching of UFD galaxies.
2. The various star formation episodes, extended to few hundred million years ago, which we have precisely dated in the dwarf spheroidal galaxies Fornax (Rusakov+2021) and Leo I (Ruiz-Lara+2021), have shed light on the effects of interactions and mergers in the star formation history of dwarf galaxies.
3. By performing for the first time a joint dynamical modeling of the internal stellar and HI gas kinematics of a Local Group dwarf galaxy, WLM, we were able to determine that its dark matter halo is likely both cored and has a prolate shape, where the co-existence of these features might pose a problem for self-interacting dark matter models (Leung+2021).
4. For the first time using cosmological simulations, we demonstrated that mergers are a viable explanation for the presence of prolate rotation in the stellar component of galaxies also on the scale of dwarf galaxies (Cardona-Barrero+2021)
5. Robert Grand ran the highest resolution MHD cosmological Milky Way simulation in the world (Grand+2021), run on MPCDF Raven large compute system for which the PI had rolling access as an MPA fellow.
Scientific activity
Related publications
-
A very dark stellar system lost in Virgo: kinematics and metallicity of SECCO 1 with MUSEWe present the results of VLT-MUSE (Very Large Telescope-Multi Unit Spectroscopic Explorer) integral field spectroscopy of SECCO 1, a faint, star-forming stellar system recently discovered as the stellar counterpart of an ultracompact high-velocity cloud (HVC 274.68+74.0), very likely residing within a substructure of the Virgo cluster of galaxiesBeccari, G. et al.
Advertised on:
22017 -
APOGEE chemical abundances of globular cluster giants in the inner GalaxyWe report chemical abundances obtained by Sloan Digital Sky Survey (SDSS)-III/Apache Point Observatory Galactic Evolution Experiment for giant stars in five globular clusters located within 2.2 kpc of the Galactic Centre. We detect the presence of multiple stellar populations in four of those clusters (NGC 6553, NGC 6528, Terzan 5 and Palomar 6)Schiavon, R. P. et al.
Advertised on:
42017 -
The episodic star formation history of the Carina dwarf spheroidal galaxyWe present deep photometry of the Carina dwarf spheroidal galaxy in the B and V filters from CTIO/MOSAIC out to and beyond the tidal radius of rell ≈ 0.48 degrees. The accurately calibrated photometry is combined with spectroscopic metallicity distributions of red giant branch (RGB) stars to determine the detailed star formation and chemicalde Boer, T. J. L. et al.
Advertised on:
122014 -
Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular ClustersGalactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiantGarcía-Hernández, D. A. et al.
Advertised on:
122015 -
The Carina Project IX: On Hydrogen and Helium Burning VariablesWe present new multiband (UBVI) time-series data of helium burning variables in the Carina dwarf spheroidal galaxy. The current sample includes 92 RR Lyrae—six of them are new identifications—and 20 Anomalous Cepheids, one of which is new identification. The analysis of the Bailey diagram shows that the luminosity amplitude of the first overtoneCoppola, G. et al.
Advertised on:
112015 -
Recovering star formation histories: Integrated-light analyses vs. stellar colour-magnitude diagramsContext. Accurate star formation histories (SFHs) of galaxies are fundamental for understanding the build-up of their stellar content. However, the most accurate SFHs - those obtained from colour-magnitude diagrams (CMDs) of resolved stars reaching the oldest main-sequence turnoffs (oMSTO) - are presently limited to a few systems in the Local GroupRuiz-Lara, T. et al.
Advertised on:
112015 -
The early days of the Sculptor dwarf spheroidal galaxyWe present the high-resolution spectroscopic study of five -3.9 ≤ [Fe/H] ≤ -2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed analysis of the chemical abundances of α, iron peak, and light and heavy elements, and drawJablonka, P. et al.
Advertised on:
112015 -
The Absolute Age of the Globular Cluster M15 Using Near-infrared Adaptive Optics Images from PISCES/LBT.We present deep near-infrared J, {K}{{s}} photometry of the old, metal-poor Galactic globular cluster M15 obtained with images collected with the LUCI1 and PISCES cameras available at the Large Binocular Telescope (LBT). We show how the use of First Light Adaptive Optics (FLAO) system coupled with the PISCES camera allows us to improve the limitingMonelli, M. et al.
Advertised on:
102015 -
Variable stars in Local Group Galaxies - I. Tracing the early chemical enrichment and radial gradients in the Sculptor dSph with RR Lyrae starsWe identified and characterized the largest (536) RR Lyrae (RRL) sample in a Milky Way dSph satellite (Sculptor) based on optical photometry data collected over ˜24 years. The RRLs display a spread in V-magnitude (˜0.35 mag) which appears larger than photometric errors and the horizontal branch (HB) luminosity evolution of a mono-metallicMartínez-Vázquez, C. E. et al.
Advertised on:
122015 -
The effect of tides on the Fornax dwarf spheroidal galaxyEstimates of the mass distribution and dark-matter (DM) content of dwarf spheroidal galaxies (dSphs) are usually derived under the assumption that the effect of the tidal field of the host galaxy is negligible over the radial extent probed by kinematic data sets. We assess the implications of this assumption in the specific case of the Fornax dSphBattaglia, G. et al.
Advertised on:
122015 -
The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clustersWe conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep intoSmith, R. et al.
Advertised on:
122015 -
The ACS LCID Project: On the Origin of Dwarf Galaxy Types—A Manifestation of the Halo Assembly Bias?We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphologicalGallart, C. et al.
Advertised on:
102015 -
The initial mass function of a massive relic galaxyMassive relic galaxies formed the bulk of their stellar component before z ˜ 2 and have remained unaltered since then. Therefore, they represent a unique opportunity to study in great detail the frozen stellar population properties of those galaxies that populated the primitive Universe. We have combined optical to near-infrared line-strengthMartín-Navarro, I. et al.
Advertised on:
72015 -
The Carina Project. VIII. The α-element abundancesWe have performed a new abundance analysis of Carina red giant (RG) stars from spectroscopic data collected with UVES (high spectral resolution) and FLAMES/GIRAFFE (high and medium resolution) at ESO/VLT. The former sample includes 44 RGs, while the latter consists of 65 (high-resolution) and ~800 (medium-resolution) RGs, covering a significantFabrizio, M. et al.
Advertised on:
82015 -
Calcium triplet metallicity calibration for stars in the Galactic bulgeAims: We present a new calibration of the calcium II triplet equivalent widths versus [Fe/H], constructed upon K giant stars in the Galactic bulge. This calibration will be used to derive iron abundances for the targets of the GIBS survey, and is in general especially well suited for solar and supersolar metallicity giants, which are typical ofVásquez, S. et al.
Advertised on:
82015 -
On the Absolute Age of the Metal-rich Globular M71 (NGC 6838). I. Optical PhotometryWe investigated the absolute age of the Galactic globular cluster M71 (NGC 6838) using optical ground-based images (u\prime ,g\prime ,r\prime ,i\prime ,z\prime ) collected with the MegaCam camera at the Canada–France–Hawaii Telescope (CFHT). We performed a robust selection of field and cluster stars by applying a new method based on the 3D (r\primeDi Cecco, A. et al.
Advertised on:
82015 -
Evidence for temporal evolution in the M33 disc as traced by its star clustersWe present precision radial velocities and stellar population parameters for 77 star clusters in the Local Group galaxy M33. Our Gran Telescopio de Canarias and William Herschel Telescope observations sample both young, massive clusters and known/candidate globular clusters (GCs), spanning ages ˜106-1010 yr, and metallicities, [M/H] ˜ -1.7 to solarBeasley, M. A. et al.
Advertised on:
82015 -
Radial velocities and metallicities from infrared Ca ii triplet spectroscopy of open clusters. II. Berkeley 23, King 1, NGC 559, NGC 6603, and NGC 7245Context. Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clustersCarrera, R. et al.
Advertised on:
62015 -
A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster systemWe present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently obtained Hubble Space Telescope/Advanced Camera for Surveys mosaic, and new Subaru/Suprime-Cam and archival Canada-France-Hawaii TelescopePota, V. et al.
Advertised on:
62015 -
Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar HistoryWe present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact ({{r}h}=68 ± 11 pc) and faint ({{M}V}=-4.8 ± 0.3), but well within the realm of dwarf galaxies. TheMartin, N. F. et al.
Advertised on:
52015