The ALHAMBRA Survey: Bayesian photometric redshifts with 23 bands for 3 deg

Molino, A.; Benítez, N.; Moles, M.; Fernández-Soto, A.; Cristóbal-Hornillos, D.; Ascaso, B.; Jiménez-Teja, Y.; Schoenell, W.; Arnalte-Mur, P.; Pović, M.; Coe, D.; López-Sanjuan, C.; Díaz-García, L. A.; Varela, J.; Stefanon, M.; Cenarro, J.; Matute, I.; Masegosa, J.; Márquez, I.; Perea, J.; Del Olmo, A.; Husillos, C.; Alfaro, E.; Aparicio-Villegas, T.; Cerviño, M.; Huertas-Company, M.; Aguerri, J. A. L.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; González, R. M.; Infante, L.; Martínez, V. J.; Prada, F.; Quintana, J. M.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 441, Issue 4, p.2891-2922

Advertised on:
7
2014
Number of authors
35
IAC number of authors
3
Citations
90
Refereed citations
80
Description
The Advance Large Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey has observed eight different regions of the sky, including sections of the Cosmic Evolution Survey (COSMOS), DEEP2, European Large-Area Infrared Space Observatory Survey (ELAIS), Great Observatories Origins Deep Survey North (GOODS-N), Sloan Digital Sky Survey (SDSS) and Groth fields using a new photometric system with 20 optical, contiguous ˜300-Å filters plus the JHKs bands. The filter system is designed to optimize the effective photometric redshift depth of the survey, while having enough wavelength resolution for the identification of faint emission lines. The observations, carried out with the Calar Alto 3.5-m telescope using the wide-field optical camera Large Area Imager for Calar Alto (LAICA) and the near-infrared (NIR) instrument Omega-2000, represent a total of ˜700 h of on-target science images. Here we present multicolour point-spread function (PSF) corrected photometry and photometric redshifts for ˜438 000 galaxies, detected in synthetic F814W images. The catalogues are complete down to a magnitude I ˜ 24.5 AB and cover an effective area of 2.79 deg2. Photometric zero-points were calibrated using stellar transformation equations and refined internally, using a new technique based on the highly robust photometric redshifts measured for emission-line galaxies. We calculate Bayesian photometric redshifts with the Bayesian Photometric Redshift (BPZ)2.0 code, obtaining a precision of δz/(1 + zs) = 1 per cent for I < 22.5 and δz/(1 + zs) = 1.4 per cent for 22.5 < I < 24.5. The global n(z) distribution shows a mean redshift = 0.56 for I < 22.5 AB and = 0.86 for I < 24.5 AB. Given its depth and small cosmic variance, ALHAMBRA is a unique data set for galaxy evolution studies.
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu
Project Image
Evolution of Galaxies
Galaxy evolution is a crucial topic in modern extragalactic astrophysics, linking cosmology to the Local Universe. Their study requires collecting statistically significant samples of galaxies of different luminosities at different distances. It implies the ability to observe faint objects using different techniques, and at different wavelengths
Jorge
Cepa Nogue