The CARMENES search for exoplanets around M dwarfs. The enigmatic planetary system GJ 4276: one eccentric planet or two planets in a 2:1 resonance?

Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.; Dreizler, S.; Anglada-Escudé, G.; Rodríguez, E.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Aceituno, J.; Béjar, V. J. S.; Cortés-Contreras, M.; González-Cuesta, L.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; López-González, M. J.; Montes, D.; Morales, J. C.; Passegger, V. M.; Rodríguez-López, C.; Schweitzer, A.; Zechmeister, M.
Bibliographical reference

Astronomy and Astrophysics, Volume 622, id.A153, 13 pp.

Advertised on:
2
2019
Number of authors
28
IAC number of authors
2
Citations
22
Refereed citations
20
Description
We report the detection of a Neptune-mass exoplanet around the M4.0 dwarf GJ 4276 (G 232-070) based on radial velocity (RV) observations obtained with the CARMENES spectrograph. The RV variations of GJ 4276 are best explained by the presence of a planetary companion that has a minimum mass of mb sin i ≈ 16 M⊕ on a Pb = 13.35 day orbit. The analysis of the activity indicators and spectral diagnostics exclude stellar induced RV perturbations and prove the planetary interpretation of the RV signal. We show that a circular single-planet solution can be excluded by means of a likelihood ratio test. Instead, we find that the RV variations can be explained either by an eccentric orbit or interpreted as a pair of planets on circular orbits near a period ratio of 2:1. Although the eccentric single-planet solution is slightly preferred, our statistical analysis indicates that none of these two scenarios can be rejected with high confidence using the RV time series obtained so far. Based on the eccentric interpretation, we find that GJ 4276 b is the most eccentric (eb = 0.37) exoplanet around an M dwarf with such a short orbital period known today. Photometric measurements and Table C.1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A153
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets

Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so

Rafael
Rebolo López
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago