The CARMENES search for exoplanets around M dwarfs. Photospheric parameters of target stars from high-resolution spectroscopy

Passegger, V. M.; Reiners, A.; Jeffers, S. V.; Wende-von Berg, S.; Schöfer, P.; Caballero, J. A.; Schweitzer, A.; Amado, P. J.; Béjar, V. J. S.; Cortés-Contreras, M.; Hatzes, A. P.; Kürster, M.; Montes, D.; Pedraz, S.; Quirrenbach, A.; Ribas, I.; Seifert, W.
Bibliographical reference

Astronomy and Astrophysics, Volume 615, id.A6, 11 pp.

Advertised on:
7
2018
Number of authors
17
IAC number of authors
1
Citations
90
Refereed citations
80
Description
Context. The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Aims: Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. Methods: We used a χ2 method to derive the stellar parameters effective temperature Teff, surface gravity logg, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since Teff, logg, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. Results: We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of σTeff = 51 K, σlog g = 0.07, and σ[Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/615/A6
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets

Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so

Rafael
Rebolo López
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago