Confirming the least massive members of the Pleiades star cluster

Zapatero Osorio, M. R.; Béjar, V. J. S.; Lodieu, N.; Manjavacas, E.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 475, Issue 1, p.139-153

Advertised on:
3
2018
Number of authors
4
IAC number of authors
2
Citations
7
Refereed citations
6
Description
We present optical photometry (i and Z band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometric, astrometric, and spectroscopic studies, and to determine the properties of the least massive population of the cluster through the comparison of the data with younger and older spectral counterparts and state-of-the art model atmospheres. We confirm three bona fide Pleiades members that have extremely red optical and infrared colours, effective temperatures of ≈1150 and ≈1350 K, and masses in the interval 11-20 MJup, and one additional likely member that shares the same motion as the cluster but does not appear to be as red as the other members with similar brightness. This latter object requires further near-infrared spectroscopy to fully address its membership in the Pleiades. The optical spectra of two bona fide members were classified as L6-L7 and show features of K I, a tentative detection of Cs I, hydrides, and water vapour with an intensity similar to high-gravity dwarfs of related classification despite their young age. The properties of the Pleiades L6-L7 members clearly indicate that very red colours of L dwarfs are not a direct evidence of ages younger than ≈100 Myr. We also report on the determination of the bolometric corrections for the coolest Pleiades members. These data can be used to interpret the observations of the atmospheres of exoplanets orbiting stars.
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rafael
Rebolo López
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago