Bibcode
Volnova, A. A.; Pozanenko, A. S.; Gorosabel, J.; Perley, D. A.; Frederiks, D. D.; Kann, D. A.; Rumyantsev, V. V.; Biryukov, V. V.; Burkhonov, O.; Castro-Tirado, A. J.; Ferrero, P.; Golenetskii, S. V.; Klose, S.; Loznikov, V. M.; Minaev, P. Yu.; Stecklum, B.; Svinkin, D. S.; Tsvetkova, A. E.; de Ugarte Postigo, A.; Ulanov, M. V.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 442, Issue 3, p.2586-2599
Advertised on:
8
2014
Citations
13
Refereed citations
12
Description
We present observations of the dark gamma-ray burst GRB 051008 provided
by Swift/BAT, Swift/XRT, Konus-WIND, INTEGRAL/SPI-ACS in the high-energy
domain and the Shajn, Swift/UVOT, Tautenburg, NOT, Gemini and Keck I
telescopes in the optical and near-infrared bands. The burst was
detected only in gamma- and X-rays and neither a prompt optical nor a
radio afterglow was detected down to deep limits. We identified the host
galaxy of the burst, which is a typical Lyman-break galaxy (LBG) with
R-magnitude of 24.06 ± 0.10 mag. A redshift of the galaxy of z =
2.77_{-0.20}^{+0.15} is measured photometrically due to the presence of
a clear, strong Lyman-break feature. The host galaxy is a small
starburst galaxy with moderate intrinsic extinction (AV =
0.3) and has a star formation rate of ˜60 M⊙
yr-1 typical for LBGs. It is one of the few cases where a GRB
host has been found to be a classical LBG. Using the redshift we
estimate the isotropic-equivalent radiated energy of the burst to be
Eiso = (1.15 ± 0.20) × 1054 erg. We
also provide evidence in favour of the hypothesis that the darkness of
GRB 051008 is due to local absorption resulting from a dense circumburst
medium.
Related projects
Formation and Evolution of Galaxies: Observations in Infrared and other Wavelengths
This IAC research group carries out several extragalactic projects in different spectral ranges, using space as well as ground-based telescopes, to study the cosmological evolution of galaxies and the origin of nuclear activity in active galaxies. The group is a member of the international consortium which built the SPIRE instrument for the
Ismael
Pérez Fournon