Hint of an exocomet transit in the CHEOPS light curve of HD 172555

Kiefer, F.; Van Grootel, V.; Lecavelier des Etangs, A.; Szabó, Gy. M.; Brandeker, A.; Broeg, C.; Collier Cameron, A.; Deline, A.; Olofsson, G.; Wilson, T. G.; Sousa, S. G.; Gandolfi, D.; Hébrard, G.; Alibert, Y.; Alonso, R.; Anglada, G.; Bárczy, T.; Barrado, D.; Barros, S. C. C.; Baumjohann, W.; Beck, M.; Beck, T.; Benz, W.; Billot, N.; Bonfils, X.; Cabrera, J.; Charnoz, S.; Csizmadia, Sz.; Davies, M. B.; Deleuil, M.; Delrez, L.; Demangeon, O. D. S.; Demory, B. -O.; Ehrenreich, D.; Erikson, A.; Fortier, A.; Fossati, L.; Fridlund, M.; Gillon, M.; Güdel, M.; Heng, K.; Hoyer, S.; Isaak, K. G.; Kiss, L. L.; Laskar, J.; Lendl, M.; Lovis, C.; Magrin, D.; Maxted, P. F. L.; Munari, M.; Nascimbeni, V.; Ottensamer, R.; Pagano, I.; Pallé, E.; Peter, G.; Piazza, D.; Piotto, G.; Pollacco, D.; Queloz, D.; Ragazzoni, R.; Rando, N.; Ratti, F.; Rauer, H.; Reimers, C.; Ribas, I.; Santos, N. C.; Scandariato, G.; Ségransan, D.; Simon, A. E.; Smith, A. M. S.; Steller, M.; Thomas, N.; Udry, S.; Walter, I.; Walton, N. A.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
3
2023
Number of authors
75
IAC number of authors
2
Citations
3
Refereed citations
1
Description
HD 172555 is a young (~20 Myr) A7V star surrounded by a 10 au wide debris disk suspected to be replenished partly by collisions between large planetesimals. Small evaporating transiting bodies, that is exocomets, have also been detected in this system by spectroscopy. After β Pictoris, this is another example of a system possibly witnessing a phase of the heavy bombardment of planetesimals. In such a system, small bodies trace dynamical evolution processes. We aim to constrain their dust content by using transit photometry. We performed a 2-day-long photometric monitoring of HD 172555 with the CHEOPS space telescope in order to detect shallow transits of exocomets with a typical expected duration of a few hours. The large oscillations in the light curve indicate that HD 172555 is a δ Scuti pulsating star. After removing those dominating oscillations, we found a hint of a transient absorption. If fitted with an exocomet transit model, it would correspond to an evaporating body passing near the star at a distance of 6.8±1.4R★ (or 0.05±0.01 au) with a radius of 2.5 km. These properties are comparable to those of the exocomets already found in this system using spectroscopy, as well as those found in the β Pic system. The nuclei of the Solar System's Jupiter family comets, with radii of 2-6 km, are also comparable in size. This is the first piece of evidence of an exocomet photometric transit detection in the young system of HD 172555.

This article uses data from CHEOPS programme CH_PR100010.
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search

The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary

Savita
Mathur
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago