OCCASO - II. Physical parameters and Fe abundances of red clump stars in 18 open clusters

Casamiquela, L.; Carrera, R.; Blanco-Cuaresma, S.; Jordi, C.; Balaguer-Núñez, L.; Pancino, E.; Anders, F.; Chiappini, C.; Díaz-Pérez, L.; Aguado, D. S.; Aparicio, A.; Garcia-Dias, R.; Heiter, U.; Martínez-Vázquez, C. E.; Murabito, S.; del Pino, A.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 470, Issue 4, p.4363-4381

Advertised on:
10
2017
Number of authors
16
IAC number of authors
7
Citations
42
Refereed citations
39
Description
Open clusters have long been used to study the chemodynamical evolution of the Galactic disc. This requires a homogeneously analysed sample covering a wide range of ages and distances. In this paper, we present the Open Clusters Chemical Abundances from Spanish Observatories (OCCASO) second data release. This comprises a sample of high-resolution (R > 65 000) and high signal-to-noise spectra of 115 red clump stars in 18 open clusters. We derive atmospheric parameters (Teff, log g, ξ), and [Fe/H] abundances using two analysis techniques: equivalent widths and spectral synthesis. A detailed comparison and a critical review of the results of the two methods are made. Both methods are carefully tested between them, with the Gaia FGK benchmark stars, and with an extensive sample of literature values. We perform a membership study using radial velocities and the resulting abundances. Finally, we compare our results with a chemodynamical model of the Milky Way thin disc concluding that the oldest open clusters are consistent with the models only when dynamical effects are taken into account.
Related projects
NGC 2808 Globular Cluster
Milky Way and Nearby Galaxies

The general aim of the project is to research the structure, evolutionary history and formation of galaxies through the study of their resolved stellar populations, both from photometry and spectroscopy. The group research concentrates in the most nearby objects, namely the Local Group galaxies including the Milky Way and M33 under the hypothesis

Martín
López Corredoira
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group

Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy

Matteo
Monelli