Bibcode
Lavie, B.; Bouchy, F.; Lovis, C.; Zapatero Osorio, M.; Deline, A.; Barros, S.; Figueira, P.; Sozzetti, A.; González Hernández, J. I.; Lillo-Box, J.; Rodrigues, J.; Mehner, A.; Damasso, M.; Adibekyan, V.; Alibert, Y.; Allende Prieto, C.; Cristiani, S.; D'Odorico, V.; Di Marcantonio, P.; Ehrenreich, D.; Génova Santos, R.; Lo Curto, G.; Martins, C. J. A. P.; Micela, G.; Molaro, P.; Nunes, N.; Palle, E.; Pepe, F.; Poretti, E.; Rebolo, R.; Santos, N.; Sousa, S.; Suárez Mascareño, A.; Tabrenero, H.; Udry, S.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
5
2023
Journal
Citations
15
Refereed citations
12
Description
We present radial velocity follow-up obtained with ESPRESSO of the M-type star LTT 1445A (TOI-455), for which a transiting planet b with an orbital period of 5.4 days was detected by TESS. We report the discovery of a second transiting planet (LTT 1445A c) and a third non-transiting candidate planet (LTT 1445A d) with orbital periods of 3.12 and 24.30 days, respectively. The host star is the main component of a triple M-dwarf system at a distance of 6.9 pc. We used 84 ESPRESSO high-resolution spectra to determine accurate masses of 2.3 ± 0.3 M⊕ and 1.0 ± 0.2 M⊕ for planets b and c and a minimum mass of 2.7 ± 0.7 M⊕ for planet d. Based on its radius of 1.43 ± 0.09 R⊕ as derived from the TESS observations, LTT 1445A b has a lower density than the Earth and may therefore hold a sizeable atmosphere, which makes it a prime target for the James Webb Space Telescope (JWST). We used a Bayesian inference approach with the nested sampling algorithm and a set of models to test the robustness of the retrieved physical values of the system. There is a probability of 85% that the transit of planet c is grazing, which results in a retrieved radius with large uncertainties at 1.60−0.34+0.67 R⊕. LTT 1445A d orbits the inner boundary of the habitable zone of its host star and could be a prime target for the JWST.
RV and activity indices for ESPRESSO are only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/673/A69
Related projects
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rafael
Rebolo López
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago