TOI-2119: a transiting brown dwarf orbiting an active M-dwarf from NASA's TESS mission

Carmichael, Theron W.; Irwin, Jonathan M.; Murgas, Felipe; Pallé, Enric; Stassun, Keivan G.; Bartnik, Matthew; Collins, Karen A.; de Leon, Jerome; Esparza-Borges, Emma; Fedewa, Jeremy; Fong, William; Fukui, Akihiko; Jenkins, Jon M.; Kagetani, Taiki; Latham, David W.; Lund, Michael B.; Mann, Andrew W.; Moldovan, Dan; Morgan, Edward H.; Narita, Norio; Painter, Shane; Parviainen, Hannu; Quintana, Elisa V.; Ricker, George R.; Schulte, Jack; Schwarz, Richard P.; Seager, Sara; Sokolovsky, Kirill; Twicken, Joseph D.; Winn, Joshua N.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
Number of authors
IAC number of authors
Refereed citations
We report the discovery of TOI-2119b, a transiting brown dwarf (BD) that orbits and is completely eclipsed by an active M-dwarf star. Using light-curve data from the Transiting Exoplanet Survey Satellite mission and follow-up high-resolution Doppler spectroscopic observations, we find the BD has a radius of Rb = 1.08 ± 0.03RJ, a mass of Mb = 64.4 ± 2.3MJ, an orbital period of P = 7.200865 ± 0.00002 d, and an eccentricity of e = 0.337 ± 0.002. The host star has a mass of M⋆ = 0.53 ± 0.02M⊙, a radius of R⋆ = 0.50 ± 0.01R⊙, an effective temperature of Teff = 3621 ± 48K, and a metallicity of $\rm [Fe/H]=+0.06\pm 0.08$. TOI-2119b joins an emerging population of transiting BDs around M-dwarf host stars, with TOI-2119 being the ninth such system. These M-dwarf-brown dwarf systems typically occupy mass ratios near q = Mb/M⋆ ≍ 0.1-0.2, which separates them from the typical mass ratios for systems with transiting substellar objects and giant exoplanets that orbit more massive stars. The nature of the secondary eclipse of the BD by the star enables us to estimate the effective temperature of the substellar object to be 2030 ± 84K, which is consistent with predictions by substellar evolutionary models.
Related projects
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Pallé Bago