Bibcode
Lodieu, N.; del Burgo, C.; Manjavacas, E.; Zapatero Osorio, M. R.; Alvarez, C.; Béjar, V. J. S.; Boudreault, S.; Lyke, J.; Rebolo, R.; Chinchilla, P.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society
Advertised on:
8
2020
Citations
0
Refereed citations
0
Description
We present Keck I/OSIRIS and Keck II/NIRC2 adaptive optics imaging of two member candidates of the Praesepe stellar cluster (d = 186.18 ± 0.11 pc; 590-790 Myr), UGCS J08451066+2148171 (L1.5 ± 0.5) and UGCS J08301935+2003293 (no spectroscopic classification). We resolved UGCS J08451066+2148171 into a binary system in the near-infrared, with a K-band wavelength flux ratio of 0.89 ± 0.04 and a projected separation of 60.3 ± 1.3 mas (11.2 ± 0.7 au; 1σ). We also resolved UGCS J08301935+2003293 into a binary system with a flux ratio of 0.46 ± 0.03 and a separation of 62.5 ± 0.9 mas. Assuming zero eccentricity, we estimate minimum orbital periods of ∼100 yr for both systems. According to theoretical evolutionary models, we derive masses in the range of 0.074-0.078 and 0.072-0.076 M☉ for the primary and secondary of UGCS J08451066+2148171 for an age of 700 ± 100 Myr. In the case of UGCS J08301935+2003293, the primary is a low-mass star at the stellar/substellar boundary (0.070-0.078 M☉), while the companion candidate might be a brown dwarf (0.051-0.065 M☉). These are the first two binaries composed of L dwarfs in Praesepe. They are benchmark systems to derive the location of the substellar limit at the age and metallicity of Praesepe, determine the age of the cluster based on the lithium depletion boundary test, derive dynamical masses, and improve low-mass stellar and substellar evolutionary models at a well-known age and metallicity.
Related projects
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rafael
Rebolo López
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago