Bibcode
                                    
                            DESI Collaboration; Adame, A. G.; Aguilar, J.; Ahlen, S.; Alam, S.; Aldering, G.; Alexander, D. M.; Alfarsy, R.; Allende Prieto, C.; Alvarez, M.; Alves, O.; Anand, A.; Andrade-Oliveira, F.; Armengaud, E.; Asorey, J.; Avila, S.; Aviles, A.; Bailey, S.; Balaguera-Antolínez, A.; Ballester, O.; Baltay, C.; Bault, A.; Bautista, J.; Behera, J.; Beltran, S. F.; BenZvi, S.; Beraldo e Silva, L.; Bermejo-Climent, J. R.; Berti, A.; Besuner, R.; Beutler, F.; Bianchi, D.; Blake, C.; Blum, R.; Bolton, A. S.; Brieden, S.; Brodzeller, A.; Brooks, D.; Brown, Z.; Buckley-Geer, E.; Burtin, E.; Cabayol-Garcia, L.; Cai, Z.; Canning, R.; Cardiel-Sas, L.; Carnero Rosell, A.; Castander, F. J.; Cervantes-Cota, J. L.; Chabanier, S.; Chaussidon, E.; Chaves-Montero, J.; Chen, S.; Chen, X.; Chuang, C.; Claybaugh, T.; Cole, S.; Cooper, A. P.; Cuceu, A.; Davis, T. M.; Dawson, K.; de Belsunce, R.; de la Cruz, R.; de la Macorra, A.; de Mattia, A.; Demina, R.; Demirbozan, U.; DeRose, J.; Dey, A.; Dey, B.; Dhungana, G.; Ding, J.; Ding, Z.; Doel, P.; Doshi, R.; Douglass, K.; Edge, A.; Eftekharzadeh, S.; Eisenstein, D. J.; Elliott, A.; Escoffier, S.; Fagrelius, P.; Fan, X.; Fanning, K.; Fawcett, V. A.; Ferraro, S.; Ereza, J.; Flaugher, B.; Font-Ribera, A.; Forero-Sánchez, D.; Forero-Romero, J. E.; Frenk, C. S.; Gänsicke, B. T.; García, L. Á.; García-Bellido, J.; Garcia-Quintero, C.; Garrison, L. H.; Gil-Marín, H.; Golden-Marx, J.; Gontcho A Gontcho, S.; Gonzalez-Morales, A. X. et al.
    Bibliographical reference
                                    The Astronomical Journal
Advertised on:
    
                        2
            
                        2024
            
  Citations
                                    218
                            Refereed citations
                                    175
                            Description
                                    The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg2 over 5 yr to constrain the cosmic expansion history through precise measurements of baryon acoustic oscillations (BAO). The scientific program for DESI was evaluated during a 5 month survey validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar Milky Way Survey (MWS), Bright Galaxy Survey (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the 5 yr program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a One-Percent Survey conducted at the conclusion of SV covering 140 deg2 using the final target selection algorithms with exposures of a depth typical of the main survey. The SV indicates that DESI will be able to complete the full 14,000 deg2 program with spectroscopically confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval z < 1.1, 0.39% over the redshift interval 1.1 < z < 1.9, and 0.46% over the redshift interval 1.9 < z < 3.5.
                            Related projects
                
Cosmology with Large Scale Structure Probes
            
    The Cosmic Microwave Background (CMB) contains the statistical information about the early seeds of the structure formation in our Universe. Its natural counterpart in the local universe is the distribution of galaxies that arises as a result of gravitational growth of those primordial and small density fluctuations. The characterization of the
            
            FRANCISCO SHU
            
                        KITAURA JOYANES
            
  
Chemical Abundances in Stars
            
    Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
            
            Carlos
            
                        Allende Prieto