General
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During the whole adult life of a star, magnetic fields are the origin of stellar activity. Our Sun has magnetic fields that give rise to such spectacular activity that impacts the climate on Earth. The magnetic activity in other stars is, in some cases, of orders of magnitude more intense than the solar one, influencing – often drastically – the transport of chemical species and angular momentum, as well as affecting the possible planetary systems around them.
The aim of this project is the study of the diverse manifestations of the magnetic field that can be observed in the solar atmosphere and in other stars. These include distinct structures as sunspots, weak quiet-sun fields or chromospheric and coronal features such as filaments and prominences. The following research topics have been gradually faced:
Solar magnetism
1. Structure and evolution of Sunspot magnetic fields.
2. Structure and evolution of quiet Sun magnetic fields.
3. Structure and evolution of the magnetism of the chromosphere and of chromospheric strcutures (promiences, spicules,...)
4. Structure and evolution or coronal loops.
5. Structure and evolution of the Sun's global field. Studies of the activity cycle.
6. Empirical study of propagation of magnetohydrodynamic waves in magnetic structures.
7. Empirical study of energy transfer mechanisms related with the heating of the external atmospheric layers.
8. Empirical study of the influence of partial ionisation in the dynamics of the solar atmosphere.
9. Participation in the European Solar Telescope project.
Stellar magnetism
1. Development of numerical tools to diagnose stellar magnetic fields, both in the surface and in the chromsphere.
2. Study of magnetic fields in stellar prominences.
3. Study of the role of magnetic fields in the late stages of stellar evolution.
Members
Results
- Spiral waves in sunspots: They have been interpreted as magnetoacoustic waves propagating from the interior to the atmosphere following the direction of the magnetic field. We have characterized the magnetic field topology, dismissing the twist of the field lines as the cause of the spiral shape (Felipe et al. 2019).
- Magnetic response to umbral flashes: Simultaneous spectropolarimetric observations of the chromospheric He I 10830 and Ca II 8542 lines have been used to estimate the fluctuations of the magnetic field associated to shock waves. The shocks cause expansion of the magnetic field lines (Houston et al. 2018, including A. Asensio Ramos).
Scientific activity
Related publications
-
Energy in density gradientInhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for severalVranjes, J. et al.
Advertised on:
12015 -
Magnetic and Dynamical Photospheric Disturbances Observed During an M3.2 Solar FlareThis Letter reports on a set of full-Stokes spectropolarimetric observations in the near-infrared He i 10830 Å spectral region covering the pre-flare, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He i 10830 Å emission in the flare. The redKuckein, C. et al.
Advertised on:
22015 -
Morphology and Dynamics of Solar Prominences from 3D MHD SimulationsIn this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background-stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic equations in threeTerradas, J. et al.
Advertised on:
12015 -
Constraining the shaping mechanism of the Red Rectangle through the spectro-polarimetry of its central starWe carried out high-sensitivity spectro-polarimetric observations of the central star of the Red Rectangle protoplanetary nebula with the aim of constraining the mechanism that gives its biconical shape. The stellar light of the central binary system is linearly polarised since it is scattered on the dust particles of the nebula. Surprisingly, theMartínez González, M. J. et al.
Advertised on:
22015 -
Hierarchical analysis of the quiet-Sun magnetismStandard statistical analysis of the magnetic properties of the quiet Sun rely on simple histograms of quantities inferred from maximum-likelihood estimations. Because of the inherent degeneracies, either intrinsic or induced by the noise, this approach is not optimal and can lead to highly biased results. We carried out a meta-analysis of theAsensio Ramos, A. et al.
Advertised on:
122014 -
The Formation and Disintegration of Magnetic Bright Points Observed by Sunrise/IMaXThe evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First, we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamicUtz, D. et al.
Advertised on:
122014 -
Fluid description of multi-component solar partially ionized plasmaWe derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived forKhomenko, E. et al.
Advertised on:
92014 -
Synthetic Observations of Wave Propagation in a Sunspot UmbraSpectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å lineFelipe, T. et al.
Advertised on:
112014 -
High speed magnetized flows in the quiet SunContext. We analyzed spectropolarimetric data recorded with Hinode/SP in quiet-Sun regions located at the disk center. We found single-lobed Stokes V profiles showing highly blue- and red-shifted signals. Oftentimes both types of events appear to be related to each other. Aims: We aim to set constraints on the nature and physical causes of theseQuintero Noda, C. et al.
Advertised on:
92014 -
Photospheric downward plasma motions in the quiet SunContext. We analyze spectropolarimetric data taken with the Hinode spacecraft in quiet solar regions at the disk center. Distorted redshifted Stokes V profiles are found that show a characteristic evolution that always follows the same sequence of phases. Aims: We aim to characterize the statistical properties of these events and recover theQuintero Noda, C. et al.
Advertised on:
62014 -
The History of a Quiet-Sun Magnetic Element Revealed by IMaX/SUNRISEIsolated flux tubes are considered to be fundamental magnetic building blocks of the solar photosphere. Their formation is usually attributed to the concentration of magnetic field to kG strengths by the convective collapse mechanism. However, the small size of the magnetic elements in quiet-Sun areas has prevented this scenario from being studiedRequerey, I. S. et al.
Advertised on:
72014 -
Infrared properties of blazars: putting the GASP-WEBT sources into contextThe infrared properties of blazars can be studied from the statistical point of view with the help of sky surveys, like that provided by the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey. However, these sources are known for their strong and unpredictable variability, which can be monitored for a handful of objects only. InRaiteri, C. M. et al.
Advertised on:
72014 -
Determination of the cross-field density structuring in coronal waveguides using the damping of transverse wavesContext. Time and spatial damping of transverse magnetohydrodynamic (MHD) kink oscillations is a source of information on the cross-field variation of the plasma density in coronal waveguides. Aims: We show that a probabilistic approach to the problem of determining the density structuring from the observed damping of transverse oscillationsArregui, I. et al.
Advertised on:
52014 -
Upper Limits to the Magnetic Field in Central Stars of Planetary NebulaeMore than about 20 central stars of planetary nebulae (CSPNs) have been observed spectropolarimetrically, yet no clear, unambiguous signal of the presence of a magnetic field in these objects has been found. We perform a statistical (Bayesian) analysis of all the available spectropolarimetric observations of CSPN to constrain the magnetic fields inAsensio Ramos, A. et al.
Advertised on:
62014 -
Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effectsWe study the Rayleigh-Taylor instability (RTI) at a prominence-corona transition region in a non-linear regime. Our aim is to understand how the presence of neutral atoms in the prominence plasma influences the instability growth rate, as well as the evolution of velocity, magnetic field vector, and thermodynamic parameters of turbulent drops. WeKhomenko, E. et al.
Advertised on:
52014 -
Rayleigh-Taylor instability in partially ionized compressible plasmas: One fluid approachAims: We study the modification of the classical criterion for the linear onset and growth rate of the Rayleigh-Taylor instability (RTI) in a partially ionized (PI) plasma in the one-fluid description by considering a generalized induction equation. Methods: The governing linear equations and appropriate boundary conditions, including gravitationalDíaz, A. J. et al.
Advertised on:
42014 -
Observations and Implications of Large-amplitude Longitudinal Oscillations in a Solar FilamentOn 2010 August 20, an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work, we analyze this periodic motion in a large fraction of the filament to characterize the underlyingKnizhnik, K. et al.
Advertised on:
42014 -
A search for magnetic fields on central stars in planetary nebulaeContext. One of the possible mechanisms responsible for the panoply of shapes in planetary nebulae is the presence of magnetic fields that drive the ejection of ionized material during the proto-planetary nebula phase. Aims: Therefore, detecting magnetic fields in such objects is of key importance for understanding their dynamics. Still, magneticLeone, F. et al.
Advertised on:
32014 -
Prominence Mass Supply and the CavityA prevalent but untested paradigm is often used to describe the prominence-cavity system: the cavity is under-dense because it is evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolution of the prominence and theInnes, D. et al.
Advertised on:
122013 -
Properties of oscillatory motions in a facular regionAims: We study the properties of waves in a facular region of moderate strength in the photosphere and chromosphere. Our aim is to statistically analyse the wave periods, power, and phase relations as a function of the magnetic field strength and inclination. Methods: Our work is based on observations obtained at the German Vacuum Tower TelescopeKostik, R. et al.
Advertised on:
112013