Bibcode
Parviainen, H.; Palle, E.; Zapatero-Osorio, M. R.; Nowak, G.; Fukui, A.; Murgas, F.; Narita, N.; Stassun, K. G.; Livingston, J. H.; Collins, K. A.; Hidalgo Soto, D.; Béjar, V. J. S.; Korth, J.; Monelli, M.; Montañes Rodriguez, P.; Casasayas-Barris, N.; Chen, G.; Crouzet, N.; de Leon, J. P.; Hernandez, A.; Kawauchi, K.; Klagyivik, P.; Kusakabe, N.; Luque, R.; Mori, M.; Nishiumi, T.; Prieto-Arranz, J.; Tamura, M.; Watanabe, N.; Gan, T.; Collins, K. I.; Jensen, E. L. N.; Barclay, T.; Doty, J. P.; Jenkins, J. M.; Latham, D. W.; Paegert, M.; Ricker, G.; Rodriguez, D. R.; Seager, S.; Shporer, A.; Vanderspek, R.; Villaseñor, J.; Winn, J. N.; Wohler, B.; Wong, I.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
1
2021
Journal
Citations
20
Refereed citations
19
Description
Context. We report the discovery of TOI-519 b (TIC 218795833), a transiting substellar object (R = 1.07 RJup) orbiting a faint M dwarf (V = 17.35) on a 1.26 d orbit. Brown dwarfs and massive planets orbiting M dwarfs on short-period orbits are rare, but more have already been discovered than expected from planet formation models. TOI-519 is a valuable addition to this group of unlikely systems, and it adds towards our understanding of the boundaries of planet formation.
Aims: We set out to determine the nature of the Transiting Exoplanet Survey Satellite (TESS) object of interest TOI-519 b.
Methods: Our analysis uses a SPOC-pipeline TESS light curve from Sector 7, multicolour transit photometry observed with MuSCAT2 and MuSCAT, and transit photometry observed with the LCOGT telescopes. We estimated the radius of the transiting object using multicolour transit modelling, and we set upper limits for its mass, effective temperature, and Bond albedo using a phase curve model that includes Doppler boosting, ellipsoidal variations, thermal emission, and reflected light components.
Results: TOI-519 b is a substellar object with a radius posterior median of 1.07 RJup and 5th and 95th percentiles of 0.66 and 1.20 RJup, respectively, where most of the uncertainty comes from the uncertainty in the stellar radius. The phase curve analysis sets an upper effective temperature limit of 1800 K, an upper Bond albedo limit of 0.49, and a companion mass upper limit of 14 MJup. The companion radius estimate combined with the Teff and mass limits suggests that the companion is more likely a planet than a brown dwarf, but a brown-dwarf scenario is a priori more likely given the lack of known massive planets in ≈ 1 day orbits around M dwarfs with Teff < 3800 K, and given the existence of some (but few) brown dwarfs.
Aims: We set out to determine the nature of the Transiting Exoplanet Survey Satellite (TESS) object of interest TOI-519 b.
Methods: Our analysis uses a SPOC-pipeline TESS light curve from Sector 7, multicolour transit photometry observed with MuSCAT2 and MuSCAT, and transit photometry observed with the LCOGT telescopes. We estimated the radius of the transiting object using multicolour transit modelling, and we set upper limits for its mass, effective temperature, and Bond albedo using a phase curve model that includes Doppler boosting, ellipsoidal variations, thermal emission, and reflected light components.
Results: TOI-519 b is a substellar object with a radius posterior median of 1.07 RJup and 5th and 95th percentiles of 0.66 and 1.20 RJup, respectively, where most of the uncertainty comes from the uncertainty in the stellar radius. The phase curve analysis sets an upper effective temperature limit of 1800 K, an upper Bond albedo limit of 0.49, and a companion mass upper limit of 14 MJup. The companion radius estimate combined with the Teff and mass limits suggests that the companion is more likely a planet than a brown dwarf, but a brown-dwarf scenario is a priori more likely given the lack of known massive planets in ≈ 1 day orbits around M dwarfs with Teff < 3800 K, and given the existence of some (but few) brown dwarfs.
Related projects
Galaxy Evolution in the Local Group
Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy
Matteo
Monelli
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rafael
Rebolo López
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago