Simulación Numérica de Procesos Astrofísicos

Año de inicio
2003
Unidad organizativa

Subvenciones relacionadas:

    General
    Descripción

    La simulación numérica mediante códigos complejos de ordenador es una herramienta fundamental en la investigación física y en la técnica desde hace décadas. El crecimiento vertiginoso de las capacidades informáticas junto con el avance notable de la matemática numérica ha hecho accesible a los centros de investigación de tamaño medio esta rama de la investigación, a caballo entre la física teórica y la física experimental. La astrofísica no es excepción a lo anterior, habiéndose desarrollado desde finales de los 70 una especialidad de la misma, la astrofísica computacional, que ha permitido llegar a comprender gran variedad de fenómenos inaccesibles a la investigación teórica pura y dar cuenta de observaciones hasta entonces inexplicadas. Su mayor campo de aplicación en las décadas pasadas han sido los fenómenos (magneto) hidrodinámicos y de dinámica de gases en multiplicidad de entornos cósmicos, por ejemplo los interiores y atmósferas estelares y planetarios y el medio interestelar, incluyendo magnetoconvección y dínamo, discos de acreción, evolución de nebulosas planetarias, explosiones y restos de supernova, etc. La incorporación a las simulaciones numéricas de las ecuaciones del transporte radiativo, ocurrida ya en décadas pasadas, ha permitido dotar de mayor realismo a los estudios de procesos hidrodinámicos en fotosferas y cromosferas estelares.

    El presente Proyecto quiere apoyar el desarrollo en el IAC de la investigación astrofísica basada en el uso de grandes códigos numéricos que requieren el uso de ordenadores masivamente paralelos y su enlace con los resultados de observación. Objetivo general de este Proyecto es la realización de cálculos de física de fluidos cósmicos y de transporte radiativo. La temática de dichos cálculos se centrará en

    • fenómenos de dinámica de gases magnetizados en interiores y atmósferas estelares
    • transporte de radiación y señales de polarización en líneas espectrales en base a modelos atómicos y moleculares realistas y los efectos Hanle y Zeeman
    • comparación de resultados teórico/numéricos con datos de observación

    Este Proyecto es especialmente relevante a la vista de la involucración, cada vez mayor, del IAC en las redes de supercomputación nacionales y europeas y, en general, en grandes iniciativas de instalación de superordenadores.

    Investigador principal

    A continuación, destacamos los resultados de nuestro resumen anual de 2022.

    A lo largo del año 2022, los efectos de ionización parcial, los efectos de ionización fuera de equilibrio y los fluidos múltiples han sido uno de los principales bloques de desarrollo tanto desde la perspectiva teórica como numérica. Por ejemplo, se ha logrado una generalización de las ecuaciones de Braginskii de 1965 para plasmas multi-especies generales con masas y temperaturas arbitrarias, donde todas las viscosidades y flujos de calor en el modelo se describen mediante sus propias ecuaciones de evolución. Este nuevo enfoque tiene una ventaja crucial en la que las componentes paralelas a lo largo de las líneas de campo magnético no se vuelven ilimitadas (infinitamente grandes) en regímenes de baja colisionalidad de interés para este grupo, como, por ejemplo, la corona solar (Hunana et al. 2022). En este bloque temático, también se han realizado simulaciones 2D y 3D utilizando un modelo de dos fluidos que trata las especies neutras e ionizadas como dos componentes separados, para analizar el efecto que tiene la interacción colisional entre ambas componentes en la dinámica de la lluvia coronal, la evolución de la inestabilidad de Kelvin-Helmholtz, la propagación de ondas magnetoacústicas a través de la cromosfera solar o el calentamiento del plasma (Martínez-Gómez et al. 2022a). Otro ejemplo de desarrollo teórico con posibles aplicaciones numéricas ha sido la búsqueda de los efectos de la difusión ambipolar en la cromosfera desde una perspectiva más fundamental mediante soluciones analíticas. Las soluciones obtenidas para casos con simetría cilíndrica se demuestran como una prueba exigente, pero no obstante viable, para los códigos magnetohidrodinámicos (MHD) que incorporan difusión ambipolar. Además, se han realizado ejecuciones detalladas de tablas de las soluciones disponibles públicamente para la comunidad (Moreno-Insertis et al. 2022). Por último, se han comenzado a estudiar los efectos de la ionización fuera de equilibrio del átomo de hidrógeno junto con el estudio de los efectos Lyman α en configuraciones simples para aplicarlos más tarde en simulaciones realistas que incluyan la cromosfera.

    La mejora y prueba de las capacidades de los códigos MHD disponibles en el grupo solar ha sido otro de los principales desarrollos clave realizados en 2022. Por ejemplo, los resultados obtenidos por Moreno-Insertis et al. 2022 se utilizaron para verificar que el código MHD Bifrost es capaz de reproducir las soluciones teóricas con la suficiente precisión hasta tiempos de difusión muy avanzados, así como para explorar las propiedades asintóticas de estas soluciones teóricas. Además de eso, se han realizado varios cambios en el código MANCHA, cuyo objetivo era aumentar la eficiencia y agregar nuevas características que permitieran a los investigadores realizar experimentos más realistas y explorar nuevas áreas de investigación. Por ejemplo, el código MANCHA se ha extendido para poder simular simulaciones solares hasta la corona, agregando un nuevo módulo que calcula de manera eficiente uno de los ingredientes clave en la corona: la conducción térmica (Navarro et al. 2022). La preparación del código MANCHA para su extensión multifluida con radiación también ha sido otra rama de trabajo relacionada con el desarrollo numérico en 2022. Además, se han desarrollado nuevas rutinas de ecuaciones de estado y opacidad que permiten separar las contribuciones de fondo en equilibrio de las tratadas fuera del equilibrio. Además de enfrentar diferentes desafíos en la física solar, el gran desarrollo generado en MANCHA es útil para estudiar estrellas frías de secuencia principal (G, K, M), lo que contribuye a una mejor comprensión de la física estelar. Para llevar a cabo todas estas tareas, fue necesario no solo realizar numerosas pruebas de escalado y experimentos numéricos en máquinas locales en el IAC, sino también en supercomputadoras como LaPalma, PICASSO, PizDaint y MareNostrum4; así como trabajar en colaboración con colaboradores externos.

    Durante 2022, en este proyecto también se ha centrado en diferentes fenómenos de la atmósfera solar y la correspondiente comparación con observaciones. Como ejemplo ilustrativo, se han modelado por primera vez Puntos Brillantes Coronales (CBPs) con la suficiente realismo para desentrañar los mecanismos que los generan y proporcionarles energía, siendo capaces también de explicar diferentes características observadas desde satélites espaciales. La comparación con observaciones se realiza a través de imágenes sintéticas de SDO/AIA, Solar Orbiter EUI-HRI e IRIS que se han calculado a partir del experimento numérico realizado con el código Bifrost (Nóbrega-Siverio y Moreno-Insertis, 2022). Otro ejemplo es la combinación de experimentos numéricos en 3D con el código MoLMH y modelado directo utilizando la línea Hα para estudiar oscilaciones transversales de hilo prominencial. Los resultados contienen implicaciones relevantes para el campo de la sismología de prominencias, mostrando que la emisión Hα se puede utilizar para detectar el modo fundamental de las oscilaciones (Martínez-Gómez et al. 2022b). Además, se han analizado observaciones de alta resolución en tierra de fenómenos ejectivos como chorros en la atmósfera solar, encontrando similitudes sorprendentes con resultados obtenidos de experimentos numéricos. Además, ha habido contribuciones significativas de los miembros de este proyecto al avance de las observaciones y la construcción de nuevos telescopios (Quintero et al. 2022) y satélites (De Pontieu et al. 2022, Cheung et al. 2022), utilizando el conocimiento adquirido de los experimentos teórico-numéricos. Finalmente, se realizó un primer intento exploratorio para comprender la física de agujeros coronales y regiones activas desde un punto de vista global a través de soluciones magnetohidrostáticas en 2D (Terradas et al. 2022), lo que requerirá un mayor desarrollo en los próximos años para su comparación con observaciones.


    Por último, pero no menos importante, se han aplicado herramientas de vanguardia como las proporcionadas por el Aprendizaje Automático (Machine Learning) y la estadística Bayesiana a problemas de la atmósfera solar. En este sentido, se lanzó un proyecto para caracterizar los límites de los métodos de k-means y su aplicación a observaciones solares. Además, se han iniciado nuevos desarrollos en códigos de transferencia radiativa para utilizarlos en un estudio preliminar de un enfoque de aprendizaje automático para el cálculo de términos radiativos. El desarrollo de la aplicación de técnicas bayesianas a la comparación de modelos en la sismología de la atmósfera solar continuó en 2022, con la publicación de un artículo de revisión que recoge los principales resultados obtenidos en la última década (Arregui 2022a). Además, el formalismo bayesiano se ha aplicado con éxito a la predicción de la amplitud del ciclo de actividad solar, proponiendo una nueva metodología para cuantificar la bondad tanto de la predicción como del modelo subyacente (Arregui 2022b).

    Publicaciones relacionadas

    Newly formed downflow lanes in exploding granules in the solar photosphere 2021A&A...653A..96E
    Two-fluid simulations of Rayleigh-Taylor instability in a magnetized solar prominence thread. II. Effects of collisionality 2021A&A...650A.181P
    Bayesian Evidence for a Nonlinear Damping Model for Coronal Loop Oscillations 2021ApJ...915L..25A
    Chromospheric Heating by Magnetohydrodynamic Waves and Instabilities 2021JGRA..12629097S
    Simulations of the Biermann battery mechanism in two-fluid partially ionised plasmas 2021A&A...650A.123M
    A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS) 2021SoPh..296...84D
    Large-amplitude Prominence Oscillations following Impact by a Coronal Jet 2021ApJ...912...75L
    Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST) 2021SoPh..296...70R
    Acoustic-gravity wave propagation characteristics in three-dimensional radiation hydrodynamic simulations of the solar atmosphere 2021RSPTA.37900170F
    Influence of ambipolar and Hall effects on vorticity in three-dimensional simulations of magneto-convection 2021RSPTA.37900176K
    The chromospheric component of coronal bright points. Coronal and chromospheric responses to magnetic-flux emergence 2021A&A...646A.107M
    Stability Analysis for an Interface with a Continuous Internal Structure
    Accurately constraining velocity information from spectral imaging observations using machine learning techniques 2021RSPTA.37900171M
    Coronal Heating by MHD Waves 2020SSRv..216..140V
    Joint action of Hall and ambipolar effects in 3D magneto-convection simulations of the quiet Sun. I. Dissipation and generation of waves 2020A&A...642A.220G
    Resonant absorption: Transformation of compressive motions into vortical motions 2020A&A...641A.106G
    Quantifying the evidence for resonant damping of coronal waves with foot-point wave power asymmetry 2020A&A...640L..17M
    Case study of multi-temperature coronal jets for emerging flux MHD models 2020A&A...639A..22J
    Ambipolar diffusion in the Bifrost code 2020A&A...638A..79N
    Numerical simulations of large-amplitude oscillations in flux rope solar prominences 2020A&A...637A..75L
    Two-dimensional simulations of coronal rain dynamics. I. Model consisting of a vertical magnetic field and an unbounded atmosphere 2020A&A...634A..36M
    An introductory guide to fluid models with anisotropic temperatures. Part 1. CGL description and collisionless fluid hierarchy 2019JPlPh..85f2002H
    An introductory guide to fluid models with anisotropic temperatures. Part 2. Kinetic theory, Padé approximants and Landau fluid closures 2019JPlPh..85f2003H
    The Role of Asymmetries in Thermal Nonequilibrium 2019ApJ...884...68K
    Nonequilibrium ionization and ambipolar diffusion in solar magnetic flux emergence processes 2020A&A...633A..66N
    Two-fluid simulations of waves in the solar chromosphere. II. Propagation and damping of fast magneto-acoustic waves and shocks 2019A&A...630A..79P
    Origin of the chromospheric three-minute oscillations in sunspot umbrae 2019A&A...627A.169F
    Fundamental transverse vibrations of the active region solar corona 2019A&A...629A..20L
    Two-fluid simulations of waves in the solar chromosphere. I. Numerical code verification 2019A&A...627A..25P
    Exploration of long-period oscillations in an Hα prominence 2019A&A...623A.144Z
    Fast-to-Alfvén Mode Conversion Mediated by Hall Current. II. Application to the Solar Atmosphere 2019ApJ...870...94G
    Three-dimensional simulations of solar magneto-convection including effects of partial ionization 2018A&A...618A..87K
    Self-similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures 2018ApJ...863..147L
    MHDSTS: a new explicit numerical scheme for simulations of partially ionised solar plasma 2018A&A...615A..67G
    Inversions of synthetic umbral flashes: Effects of scanning time on the inferred atmospheres 2018A&A...614A..73F
    Small-scale Magnetic Flux Emergence in the Quiet Sun 2018ApJ...859L..26M
    GONG Catalog of Solar Filament Oscillations Near Solar Maximum 2018ApJS..236...35L
    On the Importance of the Nonequilibrium Ionization of Si IV and O IV and the Line of Sight in Solar Surges 2018ApJ...858....8N
    Prominence oscillations 2018LRSP...15....3A
    Rayleigh-Taylor instabilities with sheared magnetic fields in partially ionised plasmas 2018A&A...609A..23R

    Charlas relacionadas

    No se han encontrado charlas relacionadas.

    Congresos relacionados

    No se han encontrado congresos relacionados.

    No se ha encontrado ninguna noticia relacionada.